
1

Course Description: Learning Python, by Mark Lutz

Synopsis
This course provides an intensive, hands-on, and in-depth introduction to the Python programming

language, and surveys tools and techniques used in common Python application roles.

Overview
This class is designed to jumpstart your Python learning experience. In general, it:

 Focuses on fundamentals and core concepts which span application domains

 Reflects real-world, up-to-date, and best-practice Python programming techniques

 Allows students to interact with a domain expert and focus on the subject matter

Class content is flexible, but consists of two distinct parts. The first and main part begins by providing

an in-depth introduction to the Python language itself. The next portion of the class moves on to survey

more advanced topics, and ways to apply Python to common programming tasks such as GUIs, the

Internet, databases, and text processing, as time allows and student interests and needs warrant.

Audience and Prerequisites
This class is intended for anyone who could benefit from an in-depth introduction to Python. Some prior

programming or scripting experience is useful, but is not strictly required for students who hope to use

Python for basic scripting tasks. Although success in any class depends as much upon students as

content, this class’s gradual approach is designed to be accessible to motivated newcomers, but

sufficiently content-rich to be useful for more advanced attendees.

Class Objectives
After taking this class:

 Students will be able to read, write, and modify Python program code.

 Students will have surveyed ways to apply Python in common domains and realistic tasks.

Class Scope
Learning to program well is a lengthy process which spans initial introductions, in-depth study, and

practical project experience. Although no 3-day class alone is enough to transform a novice into a

master Python programmer, this class does provide the solid foundation needed to begin the process.

By attending this class, students get a crucial head start with Python, and gain a strategic advantage

over less structured approaches.

Required Software
This class requires students to access the class workbook, and run the Python interpreter for lab work.

Each student will receive a CD or other media which includes the class workbook as well as Python 2.X

and 3.X self-installers for Windows. The class uses either Python 2.X or 3.X per student needs, and

2

Python’s standard IDLE GUI is used for class coding demos. No software need be installed prior to the

class, if students will have install permissions, and either CD drives, USB ports, or Web access. Notes:

 The class workbook is provided to students both on CDs, and on the Web at an address

disclosed in class. It can be provided to students on USB flashdrives instead of CDs on request.

 The class workbook may also be freely mounted on or copied to a shared server machine.

 Students may also use an existing pre-installed Python version of their choosing, especially

those running Linux, Macs, or a standard site installation.

 For lab sessions, students are free to use IDLE or any other code editing and launching tool.

Materials
Provided: Per the prior section, each student will receive media which includes the class workbook in

HTML format viewable in a web-browser. This workbook is over 300 pages long if printed; includes

source code for examples and exercises, along with supplemental materials; and is also made available

on the Web. The provided student workbook is the only material required for this class. The class

workbook is not provided in paper form; students are encouraged to take notes as they wish.

Suggested: The first part of this class parallels the book Learning Python, 5th Edition, and the second

parallels the book Programming Python, 4th Edition as well as parts of the former text. These books

are not required for or provided with the class, but are suggested as supplemental or follow-up

resources for students. In addition, the book Python Pocket Reference, 5th Edition may be useful as a

reference-only supplement for use during and after the class. See Amazon, O’Reilly, or other retailers.

Instructor
This class is taught by Python author and trainer, Mark Lutz. The instructor has been a Python

programmer since 1992, a Python book author since 1995, and a Python trainer since 1997. As of mid-

2015 his qualifications include:

 Over two decades using and promoting Python

 Author of 3 Python books, and 4 or 5 editions of each, which have sold over 500,000 units

 Instructor of some 260 Python classes and 4,000 students, in the US and abroad

 BS and MS degrees in computer science, and over 30 total years in the software field

For all class-related questions, please contact the instructor at lutz@learning-python.com.

Business
We are a sole proprietorship, accept all usual payment methods, and provide an all-inclusive pricing

model, with a base price for typical classes and optional add-on fees for extra days and students. For all

business-related questions, please contact the instructor (above), or visit the class website,

http://www.learning-python.com/index.html.

Topics Outline
The following two sections give the top-level class outline, divided into major portions, and augmented

with notes giving the major topics and goals of each section. Content emphasis is flexible, but this class

3

generally focuses on topics in Section #2 (Python Fundamentals) primarily, and covers those in Section

#3 (Python Applications) as time allows and student needs and interests warrant. More content details:

 http://learning-python.com/curriculum.html#S1 (short form)

 http://learning-python.com/fulloutline.html (long form, HTML)

 http://learning-python.com/fulloutline.pdf (long form, PDF, printable: 6 pages)

 http://learning-python.com/python-session-schedule.pdf (daily session schedule estimate, PDF)

Part I: Python Programming Fundamentals

This part is about mastering the fundamentals of the Python language, before moving on to apply it in

application roles. It presents the entire Python language, in a gradual, in-depth, and complete fashion.

By using a bottom-up approach which starts out slowly but builds on concepts as it progresses, this part

is applicable to a wide variety of experience levels. Along the way, students will also work through

progressively larger Python programming examples in lab sessions, under the instructor’s guidance. By

the end of this part, attendees will learn enough to read, modify, and write substantial Python code.

1. Introducing Python

General Python introduction

 Course objectives and a brief look at Python status, history, roles, and goals

2. Python Fundamentals

Using the Interpreter

 Installation, script execution techniques, execution concepts, module basics

Types and Operators

 All core datatypes and their built in tools, expressions, dynamic typing

Basic Statements

 Syntax model, procedural statements, iteration basics, documenting code

Functions

 Scopes, argument passing, functional tools, generators, more on iteration

Modules

 Module and package imports, reloads, modular design concepts

Classes

 OOP basics, inheritance, methods, operators, live demo, new-style, OO design

Exceptions

 Raising and catching exceptions, context managers, exception objects, design

Built-in Tools

 Debuggers, profilers, packaging, time and date tools, dynamic execution tools

4

Part II: Application Topics and Advanced Tools

This part is about what students can do with Python after they’ve mastered its fundamentals. It moves

on to explore applications-programming topics and more advanced core language topics, with larger

practical examples developed as group efforts along the way, and lab sessions which emphasize coding

more complete programs. By the end of this part, attendees will learn enough to begin applying Python

in common application domains, and building robust libraries for other programmers to use.

Because each client’s application goals are unique, a typical 3-day session focuses most of its time on

the first part of this outline (Python fundamentals), which equips students to use Python in a wide

variety of roles and domains. The more specific topics below are usually covered on an as-needed basis,

in survey fashion, as time allows, and subject to any client customizations. In all cases, class topic

emphasis is flexible, and may be adjusted both before and during class.

3. Python Applications

System Interfaces

 Shell context tools, processes and threads, IPC tools, files and directories

GUI Programming

 Event-driven programming, [tT]kinter coding, other toolkit surveys

Databases and Persistence

 Object persistence, SQL interfaces, OODB and ORM options

Text Processing

 String tools, pattern matching, XML parsers, HTML parsers

Internet Scripting

 Network sockets, client- and server-side tools, Web frameworks survey

Extending Python in C/C++

 Integrating C libraries for use in Python scripts, other techniques

Embedding Python in C/C++

 Deploying Python as an extension language

4. Advanced language topics

Unicode text, properties and descriptors, decorators, metaclasses, context managers, 3.X

5. Resources

 Pointers to additional post-class resources

