
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

297

Chapter 19 CHAPTER 19

OOP: The Big Picture

So far in this book, we’ve been using the term “object” generically. Really, the code
written up to this point has been object-based—we’ve passed objects around, used
them in expressions, called their methods, and so on. To qualify as being truly
object-oriented (OO), though, objects generally need to also participate in something
called an inheritance hierarchy.

This chapter begins the exploration of the Python class—a device used to implement
new kinds of objects in Python. Classes are Python’s main object-oriented program-
ming (OOP) tool, so we’ll also look at OOP basics along the way in this part of the
book. In Python, classes are created with a new statement: the class. As we’ll see,
the objects defined with classes can look a lot like the built-in types we saw earlier in
the book. They will also support inheritance—a mechanism of code customization
and reuse, above and beyond anything we’ve seen so far.

One note up front: Python OOP is entirely optional, and you don’t need to use
classes just to get started. In fact, you can get plenty of work done with simpler con-
structs such as functions, or even simple top-level script code. But classes turn out to
be one of the most useful tools Python provides, and we will show you why here.
They’re also employed in popular Python tools like the Tkinter GUI API, so most
Python programmers will usually find at least a working knowledge of class basics
helpful.

Why Use Classes?
Remember when we told you that programs do things with stuff? In simple terms,
classes are just a way to define new sorts of stuff, which reflect real objects in your
program’s domain. In simple terms, classes are just a way to define new kinds of
objects in your program’s domain. For instance, suppose we’ve decided to imple-
ment that hypothetical pizza-making robot we used as an example in Chapter 12. If

,ch19.10059 Page 297 Monday, November 24, 2003 12:12 PM

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 19: OOP: The Big Picture

we implement it using classes, we can model more of its real-world structure and
relationships:

Inheritance
Pizza-making robots are a kind of robot, and so possess the usual robot-y prop-
erties. In OOP terms, we say they inherit properties from the general category of
all robots. These common properties need to be implemented only once for the
general case and reused by all types of robots we may build in the future.

Composition
Pizza-making robots are really collections of components that work together as a
team. For instance, for our robot to be successful, it might need arms to roll
dough, motors to maneuver to the oven, and so on. In OOP parlance, our robot
is an example of composition; it contains other objects it activates to do its bid-
ding. Each component might be coded as a class, which defines its own behav-
ior and relationships.

General OOP ideas like inheritance and composition apply to any application that
can be decomposed into a set of objects. For example, in typical GUI systems, inter-
faces are written as collections of widgets—buttons, labels, and so on—which are all
drawn when their container is drawn (composition). Moreover, we may be able to
write our own custom widgets—buttons with unique fonts, labels with new color
schemes, and the like—which are specialized versions of more general interface
devices (inheritance).

From a more concrete programming perspective, classes are a Python program unit,
just like functions and modules. They are another compartment for packaging logic
and data. In fact, classes also define a new namespace much like modules. But com-
pared to other program units we’ve already seen, classes have three critical distinc-
tions that make them more useful when it comes to building new objects:

Multiple instances
Classes are roughly factories for generating one or more objects. Every time we
call a class, we generate a new object, with a distinct namespace. Each object
generated from a class has access to the class’s attributes and gets a namespace
of its own for data that varies per object.

Customization via inheritance
Classes also support the OOP notion of inheritance; they are extended by rede-
fining their attributes outside the class itself. More generally, classes can build up
namespace hierarchies, which define names to be used by objects created from
classes in the hierarchy.

Operator overloading
By providing special protocol methods, classes can define objects that respond to
the sorts of operations we saw work on built-in types. For instance, objects made

,ch19.10059 Page 298 Monday, November 24, 2003 12:12 PM

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

OOP from 30,000 Feet | 299

with classes can be sliced, concatenated, indexed, and so on. Python provides
hooks classes can use to intercept and implement any built-in type operation.

OOP from 30,000 Feet
Before we show what this all means in terms of code, we’d like to say a few words
about the general ideas behind OOP here. If you’ve never done anything object-
oriented in your life before now, some of the words we’ll be using in this chapter
may seem a bit perplexing on the first pass. Moreover, the motivation for using such
words may be elusive, until you’ve had a chance to study the ways that program-
mers apply them in larger systems. OOP is as much an experience as a technology.

Attribute Inheritance Search
The good news is that OOP is much simpler to understand and use in Python than in
other languages such as C++ or Java. As a dynamically-typed scripting language,
Python removes much of the syntactic clutter and complexity that clouds OOP in
other tools. In fact, most of the OOP story in Python boils down to this expression:

object.attribute

We’ve been using this all along in the book so far, to access module attributes, call
methods of objects, and so on. When we say this to an object that is derived from a
class statement, the expression kicks off a search in Python—it searches a tree of
linked objects, for the first appearance of the attribute that it can find. In fact,
when classes are involved, the Python expression above translates to the following in
natural language:

Find the first occurrence of attribute by looking in object,and all classes above it,
from bottom to top and left to right.

In other words, attribute fetches are simply tree searches. We call this search proce-
dure inheritance, because objects lower in a tree inherit attributes attached to objects
higher in a tree, just because the attribute search proceeds from bottom to top in the
tree. In a sense, the automatic search performed by inheritance means that objects
linked into a tree are the union of all the attributes defined in all their tree parents, all
the way up the tree.

In Python, this is all very literal: we really do build up trees of linked objects with
code, and Python really does climb this tree at runtime searching for attributes, every
time we say object.attribute. To make this more concrete, Figure 19-1 sketches an
example of one of these trees.

In this figure, there is a tree of five objects labeled with variables, all of which have
attached attributes, ready to be searched. More specifically, this tree links together
three class objects (the ovals: C1, C2, C3), and two instance objects (the rectangles: I1,

,ch19.10059 Page 299 Monday, November 24, 2003 12:12 PM

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 19: OOP: The Big Picture

I2), into an inheritance search tree. In the Python object model, classes, and the
instances you generate from them, are two distinct object types:

Classes
Serve as instance factories. Their attributes provide behavior—data and func-
tions—that is inherited by all the instances generated from them (e.g., a func-
tion to compute employee salary from pay and hours).

Instances
Represent the concrete items in a program’s domain. Their attributes record data
that varies per specific object (e.g., an employee’s social security number).

In terms of search trees, an instance inherits attributes from its class, and a class
inherits attributes from all classes above it in the tree.

In Figure 19-1, we can further categorize the ovals by their relative position in the
tree. We usually call classes higher in the tree (like C2 and C3) superclasses; classes
lower in the tree (like C1) are known as subclasses.* These terms refer both to relative
tree positions and roles. By virtue of inheritance search, superclasses provide behav-
ior shared by all their subclasses. Because the search proceeds bottom-up, subclasses
may override behavior defined in their superclasses by redefining superclass names
lower in the tree.

Since these last few words are really the crux of the matter of software customization
in OOP, let’s expand on this concept. Suppose we’ve built up the tree in Figure 19-1,
and then say this:

I2.w

Right away, we’re doing inheritance here. Because this is one of those object.
attribute expressions, it triggers a search of the tree in Figure 19-1. Python will

Figure 19-1. A class tree

* In other literature, you may also occasionally see the terms base class and derived class to describe super-
classes and subclasses, respectively.

C1
.x
.y

C2
.x
.z

C3
.w
.z

I2
.name

I1
.name

,ch19.10059 Page 300 Monday, November 24, 2003 12:12 PM

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

OOP from 30,000 Feet | 301

search for attribute w, by looking in I2 and above. Specifically, it will search the
linked objects in this order:

I2, C1, C2, C3

and stop at the first attached w it finds (or raise an error if it can’t be found at all). For
this expression, w won’t be found until it searches C3 as a last step, because it only
appears in that object. In other words, I2.w resolves to C3.w, by virtue of the auto-
matic search. In OOP terminology, I2 “inherits” attribute w from C3. Other attribute
references will wind up following different paths in the tree; for example:

• I1.x and I2.x both find x in C1 and stop, because C1 is lower than C2.

• I1.y and I2.y both find y in C1, because that’s the only place y appears.

• I1.z and I2.z both find z in C2, because C2 is more to the left than C3.

• I2.name finds name in I2, without climbing the tree at all.

Ultimately, the two instances inherit four attributes from their classes: w, x, y, and z.
Trace these searches through the tree in Figure 19-1 to get a feel for how inheritance
does its search in Python. The first in the list above is perhaps the most important to
notice—because C1 redefines attribute x lower in the tree, it effectively replaces the
version above in C2. As you’ll see in a moment, such redefinitions are at the heart of
software customization in OOP.

All of the class and instance objects we put in these trees are just packages of names
known as namespaces—places where we can attach attributes. If that sounds like
modules, it should; the only major difference here is that objects in class trees also
have automatically-searched links to other namespace objects.

Coding Class Trees
Although we are speaking in the abstract here, there is tangible code behind all these
ideas. We construct such trees and their objects with class statements and class
calls, which we’ll meet in more detail. But in short:

• Each class statement generates a new class object.

• Each time a class is called, it generates a new instance object.

• Instances are automatically linked to the class they are created from.

• Classes are linked to their superclasses, by listing them in parenthesis in a class
header line; the left-to-right order there gives the order in the tree.

To build the tree in Figure 19-1, for example, we would run Python code of this form
(we’ve omitted the guts of the class statements here):

class C2: ... # Make class objects (ovals).
class C3: ...
class C1(C2, C3): ... # Links to superclasses

I1 = C1() # Make instance objects (rectangles).
I2 = C1() # Linked to their class

,ch19.10059 Page 301 Monday, November 24, 2003 12:12 PM

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 19: OOP: The Big Picture

Here, we build the three class objects by running three class statements, and make
the two instance objects by calling a class twice as though it were a function. The
instances remember the class they were made from, and class C1 remembers its listed
superclasses.

Technically, this example is using something called multiple inheritance, which sim-
ply means that a class has more than one superclass above it in the class tree. In
Python, the left-to-right order of superclasses listed in parenthesis in a class state-
ment (like C1’s here) gives the order in which superclasses are searched, if there is
more than one.

Because of the way inheritance searches, the object you attach an attribute to turns
out to be crucial—it determines the name’s scope. Attributes attached to instances
only pertain to a single instance, but attributes attached to classes are shared by all
their subclasses and instances. Later, we’ll study the code that hangs attributes on
these objects in depth. As we’ll find:

• Attributes are usually attached to classes by assignments made within class
statements.

• Attributes are usually attached to instances by assignments to a special argu-
ment passed to functions inside classes, called self.

For example, classes provide behavior for their instances with functions, created by
coding def statements inside class statements. Because such nested defs assign
names within the class, they wind up attaching attributes to the class object that will
be inherited by all instances and subclasses:

class C1(C2, C3): # Make and link class C1.
 def setname(self, who): # Assign name: C1.setname
 self.name = who # Self is either I1 or I2.

I1 = C1() # Make two instances.
I2 = C1()
I1.setname('bob') # Sets I1.name to 'bob'
I2.setname('mel') # Sets I2.name to 'mel'
print I1.name # Prints 'bob'

There’s nothing syntactically unique about def in this context. Operationally, when a
def appears inside a class like this, it is usually known as a method, and automati-
cally receives a special first argument—called self by convention—which provides a
handle back to the instance to be processed.*

Because classes are factories for multiple instances, their methods usually go through
this automatically passed-in self argument, whenever they need to fetch or set

* If you’ve ever used C++ or Java, Python’s self is the same as the this pointer, but self is always explicit in
Python to make attribute access more obvious.

,ch19.10059 Page 302 Monday, November 24, 2003 12:12 PM

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

OOP from 30,000 Feet | 303

attributes of the particular instance being processed by a method call. In the code
above, self is used to store a name on one of two instances.

Like simple variables, attributes of classes and instances are not declared ahead of
time, but spring into existence the first time they are assigned a value. When meth-
ods assign to self attributes, they create or change an attribute in an instance at the
bottom of the class tree (i.e., the rectangles), because self automatically refers to the
instance being processed.

In fact, because all the objects in class trees are just namespace objects, we can fetch
or set any of their attributes by going through the appropriate names. Saying C1.
setname is as valid as saying I1.setname, as long as names C1 and I1 are in your code’s
scopes.

If a class wants to guarantee that an attribute like name is always set in its instances, it
more typically would fill out the attribute at construction time like this:

class C1(C2, C3):
 def _ _init_ _(self, who): # Set name when constructed.
 self.name = who # Self is either I1 or I2

I1 = C1('bob') # Sets I1.name to 'bob'
I2 = C1('mel') # Sets I2.name to 'mel'

If coded and inherited, a method named _ _init_ _ is called automatically by Python
each time an instance is generated from a class. The new instance is passed in to the
self argument of _ _init_ _ as usual, and any values listed in parenthesis in the class
call go to arguments two and beyond. The effect here is to initialize instances when
made, without requiring extra method calls.

The _ _init_ _ method is known as a constructor, because of when it is run. It’s the
most commonly used representative of a larger class of methods called operator over-
loading methods. Such methods are inherited in class trees as usual, and have double
underscores at the start and end of their names to make them distinct. They’re run
by Python automatically when objects appear in expressions, and are mostly an alter-
native to using simple method calls. They’re also optional: if omitted, the operation
is not supported.

For example, to implement set intersection, a class might either provide a method
named intersect, or overload the & expression operator to dispatch to the required
logic by coding a method named _ _and_ _. Because the operator scheme makes
instances look and feel more like built-in types, it allows some classes to provide a
consistent and natural interface, and be compatible with code that expects a built-in
type.

,ch19.10059 Page 303 Monday, November 24, 2003 12:12 PM

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 19: OOP: The Big Picture

OOP Is About Code Reuse
And that, along with a few syntax details, is most of the OOP story in Python.
There’s a bit more to OOP in Python than inheritance; for example, operator over-
loading is much more general than described so far—classes may also provide the
implementation of indexing, attribute fetches, printing, and more. By and large,
though, OOP is about looking up attributes in trees.

So why would we be interested in building and searching trees of objects? Although
it takes some experience to see how, when used well, classes support code reuse in
ways that other Python program components cannot. With classes, we code by cus-
tomizing existing software, instead of either changing existing code in-place, or start-
ing from scratch for each new project.

At a fundamental level, classes are really just packages of functions and other names,
much like a module. However, the automatic attribute inheritance search that we get
from classes, supports customization of software above and beyond modules and
functions. Moreover, classes provide a natural structure for code that localizes logic
and names, and so aids in debugging.

For instance, because methods are simply functions with a special first argument, we
could mimic some of their behavior by manually passing objects to be processed to
simple functions. The participation of methods in class inheritance, though, allows
us to naturally customize existing software by coding subclasses with new method
definitions, rather than changing exiting code in-place. There is really no such con-
cept with modules and functions.

Here’s an example: suppose you’re assigned the task of implementing an employee
database application. As a Python OOP programmer, you might begin by coding a
general superclass that defines default behavior common to all the kinds of employ-
ees in your organization:

class Employee: # General superclass
 def computeSalary(self): ... # Common or default behavior
 def giveRaise(self): ...
 def promote(self): ...
 def retire(self): ...

Once you’ve coded this general behavior, you can specialize it for each specific kind
of employee that differs from the norm. You code subclasses that customize just the
bits of behavior that differ per employee type; the rest of employee behavior will be
inherited from the more general class. For example, if engineers have a unique salary
computation rule (maybe it’s not hours times rate), replace just that one method in a
subclass:

class Engineer(Employee): # Specialized subclass
 def computeSalary(self): ... # Something custom here

,ch19.10059 Page 304 Monday, November 24, 2003 12:12 PM

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

OOP from 30,000 Feet | 305

Because the computeSalary version here is lower in the class tree, it will replace (over-
ride) the general version in Employee. Create instances of the kind of employee class
that a real employee belongs to, to get the correct behavior. Notice that we can make
instances of any class in a tree, not just the ones at the bottom—the class you make
an instance from determines the level at which attribute search will begin:

bob = Employee() # Default behavior
mel = Engineer() # Custom salary calculator

Ultimately, these two instance objects might wind up embedded in a larger con-
tainer object (e.g., a list, or an instance of another class) that represents a depart-
ment or company, using the composition idea mentioned at the start of this chapter.
When we later ask for salaries, they will be computed according to the class the
object was made from, due to inheritance search—yet another instance of the poly-
morphism idea for functions introduced in Chapter 12:*

company = [bob, mel] # A composite object
for emp in company:
 print emp.computeSalary() # Run this object's version

Polymorphism means that the meaning of an operation depends on the object being
operated on. Here, method computeSalary is located by inheritance in each object
before it is called. In other applications, polymorphism might also be used to hide
(i.e., encapsulate) interface differences. For example, a program that processes data
streams might be coded to expect objects with input and output methods, without
caring what those methods actually do:

def processor(reader, converter, writer):
 while 1:
 data = reader.read()
 if not data: break
 data = converter(data)
 writer.write(data)

By passing in instances of subclasses that specialize the required read and write
method interfaces for various data sources, the processor function can be reused for
any data source we need to use, both now and in the future:

class Reader:
 def read(self): ... # Default behavior and tools
 def other(self): ...
class FileReader(Reader):
 def read(self): ... # Read from a local file
class SocketReader(Reader):
 def read(self): ... # Read from a network socket
...
processor(FileReader(...), Converter, FileWriter(...))
processor(SocketReader(...), Converter, TapeWriter(...))
processor(FtpReader(...), Converter, XmlWriter(...))

* Note that the company list in this example could be stored on a file with Python object pickling, introduced
later in this book, to yield a persistent employee database.

,ch19.10059 Page 305 Monday, November 24, 2003 12:12 PM

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 19: OOP: The Big Picture

Moreover, the internal implementation of those read and write methods can be
changed without impacting code such as this that uses them. In fact, the processor
function might itself be a class, to allow the conversion logic of converter to be filled
in by inheritance, and embed readers and writers by composition (we’ll see how later
in this part of the book).

Once you get used to programming by software customization this way, you’ll find
that when it’s time to write a new program, much of your work may already be
done—your task largely becomes mixing together existing superclasses that already
implement the behavior required by your program. For example, both the Employee
and reader and writer classes in these examples may have already been written by
someone else, for use in a completely different program. If so, you’ll get all their code
“for free.”

In fact, in many application domains, you can fetch or purchase collections of super-
classes, known as frameworks, which implement common programming tasks as
classes, ready to be mixed into your applications. These frameworks might provide
database interfaces, testing protocols, GUI toolkits, and so on. With frameworks,
you often simply code a subclass that fills in an expected method or two; the frame-
work classes higher in the tree do most of the work for you. Programming in such an
OOP world is just a matter of combining and specializing already-debugged code by
writing subclasses of your own.

Of course, it takes awhile to learn how to leverage classes to achieve such OOP uto-
pia. In practice, object-oriented work also entails substantial design to fully realize
the code reuse benefits of classes. To this end, programmers have begun cataloging
common OOP structures, known as design patterns, to help with design issues. The
actual code you write to do OOP in Python is so simple that it will not, by itself, pose
an additional obstacle to your OOP quests. To see why, you’ll have to move on to
Chapter 20.

,ch19.10059 Page 306 Monday, November 24, 2003 12:12 PM

