
The following material appeared in the third edition of this book but was cut in the fourth. It has not

been updated for Python 3.X, but is provided as is to serve as PyTree documentation.

PyTree: A Generic Tree Object Viewer

Up to now, this chapter has been command-line-oriented. To wrap up, I want to show you a program that

merges the GUI technology we studied earlier in the book with some of the data structure ideas we’ve met

in this chapter.

This program is called PyTree, a generic tree data structure viewer written in Python with the Tkinter GUI

library. PyTree sketches out the nodes of a tree on-screen as boxes connected by arrows. It also knows how

to route mouse clicks on drawn tree nodes back to the tree, to trigger tree-specific actions. Because PyTree

lets you visualize the structure of the tree generated by a set of parameters, it’s a fun way to explore tree-

based algorithms.

PyTree supports arbitrary tree types by “wrapping” real trees in interface objects. The interface objects

implement a standard protocol by communicating with the underlying tree object. For the purposes of this

chapter, PyTree is instrumented to display binary search trees; for the next chapter, it’s also set up to render

expression parse trees. New trees can be viewed by coding wrapper classes to interface to new tree types.

The GUI interfaces PyTree utilizes were covered in depth earlier in this book, so I won’t go over this code

in much detail here. See Part III for background details and be sure to run this program on your own

computer to get a better feel for its operation. Because it is written with Python and Tkinter, it should be

portable to Windows, Unix, and Macs.

Running PyTree

Before we get to the code, let’s see what PyTree looks like. You can launch PyTree from the PyDemos

launcher bar (see the top level of the examples distribution source tree) or by directly running the

treeview.py file listed in Example 20-27. Figure 20-2 shows PyTree in action displaying the binary tree

created by the “test1” button. Trees are sketched as labels embedded in a canvas and are connected by lines

with arrows. The lines reflect parent-to-child relationships in the actual tree; PyTree attempts to lay out the

tree to produce a more or less uniform display like this one.

[[]]

Figure Error! No text of specified style in document.-1. PyTree viewing a binary search

tree (test1)

PyTree’s window consists of a canvas with vertical and horizontal scrolls and a set of controls at the

bottom: radio buttons for picking the type of tree you wish to display, a set of buttons that trigger canned

tree drawing tests, and an input field for typing text to specify and generate a new tree. The set of test

buttons changes if you pick the Parser radio button (you get one less test button); PyTree use widget

pack_forget and pack methods to hide and show tree-specific buttons on the fly.

When you pick one of the canned test buttons, it displays in the input field the string you would type to

generate the tree drawn. For binary trees, type a list of values separated by spaces and press the “input”

button or the Enter key to generate a new tree; the new tree is the result of inserting the typed values from

left to right. For parse trees, input an expression string in the input field instead (more on this later). Figure

20-3 shows the result of typing a set of values into the input field and submitting; the resulting binary tree

shows up in the canvas.

[[]]

Figure Error! No text of specified style in document.-2. A binary tree typed manually

with on-click pop up

Notice the pop up in this screenshot; left-clicking on a displayed tree node with your mouse runs whatever

action a tree wrapper class defines and displays its result in the pop up. Binary trees have no action to run,

so we get a default message in the pop up, but parse trees use the mouse click to evaluate the subtree rooted

at the clicked node (again, more on parse trees later).

Just for fun, maximize this window and press the “test4” button—it inserts 100 numbers from zero through

99 into a new binary tree at random and displays the result. Figure 20-4 captures one portion of this tree;

it’s much too large to fit on one screen (or on one book page), but you can move around the tree with the

canvas scroll bars.

[[]]

Figure Error! No text of specified style in document.-3. PyTree viewing a large binary

search tree (test4)

PyTree uses an algorithm to connect all parents to their children in this tree without crossing their

connecting lines. It does some upfront analysis to try to arrange descendents at each level to be as close to

their parents as possible. This analysis step also yields the overall size of a new tree—PyTree uses it to

reset the scrollable area size of the canvas for each tree drawn.

PyTree Source Code

Let’s move on to the code; similar to PyForm in the prior chapter, PyTree is coded as two modules. Here,

one module handles the task of sketching trees in the GUI, and another implements wrappers to interface to

various tree types and extends the GUI with extra widgets.

Tree-independent GUI implementation

The module in Example 20-26 does the work of drawing trees in a canvas. It’s coded to be independent of

any particular tree structure—its TreeViewer class delegates to its TreeWrapper class when it needs

tree-specific information for the drawing (e.g., node label text and node child links). TreeWrapper in

turn expects to be subclassed for a specific kind of tree; in fact, it raises assertion errors if you try to use it

without subclassing. In design terms, TreeViewer embeds a TreeWrapper; it’s almost as easy to code

TreeViewer subclasses per tree type, but that limits a viewer GUI to one particular kind of tree (see

treeview_subclasses.py on the book’s examples distribution for a subclassing-based alternative).

Trees are drawn in two steps: a planning traversal that builds a layout data structure that links parents and

children, and a drawing step that uses the generated plan to draw and link node labels on the canvas. The

two-step approach simplifies some of the logic required to lay out trees uniformly. Study Example 20-26

for more details.

Example Error! No text of specified style in document.-1. PP3E\Dstruct\TreeView\treeview_wrappers.py

PyTree: sketch arbitrary tree data structures in a scrolled canvas;

this version uses tree wrapper classes embedded in the viewer GUI

to support arbitrary trees (i.e., composition, not viewer subclassing);

also adds tree node label click callbacks--run tree specific actions;

see treeview_subclasses.py for subclass-based alternative structure;

subclassing limits one tree viewer to one tree type, wrappers do not;

see treeview_left.py for an alternative way to draw the tree object;

see and run treeview.py for binary and parse tree wrapper test cases;

from Tkinter import *

from tkMessageBox import showinfo

Width, Height = 350, 350 # start canvas size (reset per tree)

Rowsz = 100 # pixels per tree row

Colsz = 100 # pixels per tree col

###################################

interface to tree object's nodes

###################################

class TreeWrapper: # subclass for a tree type

 def children(self, treenode):

 assert 0, 'children method must be specialized for tree type'

 def label(self, treenode):

 assert 0, 'label method must be specialized for tree type'

 def value(self, treenode):

 return ''

 def onClick(self, treenode): # node label click callback

 return ''

 def onInputLine(self, line, viewer): # input line sent callback

 pass

###########$######################

tree view GUI, tree independent

##################################

class TreeViewer(Frame):

 def __init__(self, wrapper, parent=None, tree=None, bg='brown', fg='beige'):

 Frame.__init__(self, parent)

 self.pack(expand=YES, fill=BOTH)

 self.makeWidgets(bg) # build GUI: scrolled canvas

 self.master.title('PyTree 1.0') # assume I'm run standalone

 self.wrapper = wrapper # embed a TreeWrapper object

 self.fg = fg # setTreeType changes wrapper

 if tree:

 self.drawTree(tree)

 def makeWidgets(self, bg):

 self.title = Label(self, text='PyTree 1.0')

 self.canvas = Canvas(self, bg=bg, borderwidth=0)

 vbar = Scrollbar(self)

 hbar = Scrollbar(self, orient='horizontal')

 self.title.pack(side=TOP, fill=X)

 vbar.pack(side=RIGHT, fill=Y) # pack canvas after bars

 hbar.pack(side=BOTTOM, fill=X)

 self.canvas.pack(side=TOP, fill=BOTH, expand=YES)

 vbar.config(command=self.canvas.yview) # call on scroll move

 hbar.config(command=self.canvas.xview)

 self.canvas.config(yscrollcommand=vbar.set) # call on canvas move

 self.canvas.config(xscrollcommand=hbar.set)

 self.canvas.config(height=Height, width=Width) # viewable area size

 def clearTree(self):

 mylabel = 'PyTree 1.0 - ' + self.wrapper.__class__.__name__

 self.title.config(text=mylabel)

 self.unbind_all('<Button-1>')

 self.canvas.delete('all') # clear events, drawing

 def drawTree(self, tree):

 self.clearTree()

 wrapper = self.wrapper

 levels, maxrow = self.planLevels(tree, wrapper)

 self.canvas.config(scrollregion=(# scrollable area

 0, 0, (Colsz * maxrow), (Rowsz * len(levels)))) # upleft, lowright

 self.drawLevels(levels, maxrow, wrapper)

 def planLevels(self, root, wrap):

 levels = []

 maxrow = 0 # traverse tree to

 currlevel = [(root, None)] # lay out rows, cols

 while currlevel:

 levels.append(currlevel)

 size = len(currlevel)

 if size > maxrow: maxrow = size

 nextlevel = []

 for (node, parent) in currlevel:

 if node != None:

 children = wrap.children(node) # list of nodes

 if not children:

 nextlevel.append((None, None)) # leave a hole

 else:

 for child in children:

 nextlevel.append((child, node)) # parent link

 currlevel = nextlevel

 return levels, maxrow

 def drawLevels(self, levels, maxrow, wrap):

 rowpos = 0 # draw tree per plan

 for level in levels: # set click handlers

 colinc = (maxrow * Colsz) / (len(level) + 1) # levels is treenodes

 colpos = 0

 for (node, parent) in level:

 colpos = colpos + colinc

 if node != None:

 text = wrap.label(node)

 more = wrap.value(node)

 if more: text = text + '=' + more

 win = Label(self.canvas, text=text,

 bg=self.fg, bd=3, relief=RAISED)

 win.pack()

 win.bind('<Button-1>',

 (lambda evt, node=node: self.onClick(evt, node)))

 self.canvas.create_window(colpos, rowpos, anchor=NW,

 window=win, width=Colsz*.5, height=Rowsz*.5)

 if parent != None:

 self.canvas.create_line(

 parent.__colpos + Colsz*.25, # from x-y, to x-y

 parent.__rowpos + Rowsz*.5,

 colpos + Colsz*.25, rowpos, arrow='last', width=1)

 node.__rowpos = rowpos

 node.__colpos = colpos # mark node, private attrs

 rowpos = rowpos + Rowsz

 def onClick(self, event, node):

 label = event.widget

 wrap = self.wrapper

 text = 'Label = ' + wrap.label(node) # on label click

 value = wrap.value(node)

 if value:

 text = text + '\nValue = ' + value # add tree text if any

 result = wrap.onClick(node) # run tree action if any

 if result:

 text = text + '\n' + result # add action result

 showinfo('PyTree', text) # pop up std dialog

 def onInputLine(self, line): # feed text to tree wrapper

 self.wrapper.onInputLine(line, self) # ex: parse and redraw tree

 def setTreeType(self, newTreeWrapper): # change tree type drawn

 if self.wrapper != newTreeWrapper: # effective on next draw

 self.wrapper = newTreeWrapper

 self.clearTree() # else old node, new wrapper

Tree wrappers and test widgets

The other half of PyTree consists of a module that defines TreeWrapper subclasses that interface to

binary and parser trees, implements canned test case buttons, and adds the control widgets to the bottom of

the PyTree window.
5
 These control widgets were split off into this separate module (in Example 20-27) on

purpose, because the PyTree canvas might be useful as a viewer component in other GUI applications.

Example Error! No text of specified style in document.-2. PP3E\Dstruct\TreeView\treeview.py

PyTree launcher script

wrappers for viewing tree types in the book, plus test cases/GUI

from Tkinter import *

from treeview_wrappers import TreeWrapper, TreeViewer

from PP3E.Dstruct.Classics import btree

from PP3E.Lang.Parser import parser2

binary tree wrapper

class BinaryTreeWrapper(TreeWrapper): # embed binary tree in viewer

 def children(self, node): # adds viewer protocols

 try: # to interface with tree

 return [node.left, node.right]

 except:

 return None

 def label(self, node):

 try:

 return str(node.data)

 except:

 return str(node)

 def onInputLine(self, line, viewer): # on test entry at bottom

 items = line.split() # make tree from text input

 t = btree.BinaryTree() # draw resulting btree

 for x in items: t.insert(x) # no onClick handler here

 viewer.drawTree(t.tree)

binary tree extension

class BinaryTree(btree.BinaryTree):

 def __init__(self, viewer): # embed viewer in tree

 btree.BinaryTree.__init__(self) # but viewer has a wrapper

 self.viewer = viewer

 def view(self):

 self.viewer.drawTree(self.tree)

parse tree wrapper

class ParseTreeWrapper(TreeWrapper):

5 If you're looking for a coding exercise, try adding another wrapper class and radio button to view the

KeyedBinaryTree we wrote earlier in this chapter. You'll probably want to display the key in the GUI and pop up

the associated value on-clicks.

 def __init__(self): # embed parse tree in viewer

 self.dict = {} # adds viewer protocols

 def children(self, node):

 try:

 return [node.left, node.right]

 except:

 try:

 return [node.var, node.val]

 except:

 return None

 def label(self, node):

 for attr in ['label', 'num', 'name']:

 if hasattr(node, attr):

 return str(getattr(node, attr))

 return 'set'

 def onClick(self, node): # on tree label click

 try: # tree-specific action

 result = node.apply(self.dict) # evaluate subtree

 return 'Value = ' + str(result) # show result in pop up

 except:

 return 'Value = <error>'

 def onInputLine(self, line, viewer): # on input line

 p = parser2.Parser() # parse expr text

 p.lex.newtext(line) # draw resulting tree

 t = p.analyse()

 if t: viewer.drawTree(t)

canned test cases (or type new nodelists/exprs in input field)

def shownodes(sequence):

 sequence = map(str, sequence) # convert nodes to strings

 entry.delete(0, END) # show nodes in text field

 entry.insert(0, ' '.join(sequence))

def test1_binary(): # tree type is binary wrapper

 nodes = [3, 1, 9, 2, 7] # make a binary tree

 tree = BinaryTree(viewer) # embed viewer in tree

 for i in nodes: tree.insert(i)

 shownodes(nodes) # show nodes in input field

 tree.view() # sketch tree via embedded viewer

def test2_binary():

 nodes = 'badce'

 tree = btree.BinaryTree() # embed wrapper in viewer

 for c in nodes: tree.insert(c) # make a binary tree

 shownodes(nodes)

 viewer.drawTree(tree.tree) # ask viewer to draw it

def test3_binary():

 nodes = 'abcde'

 tree = BinaryTree(viewer)

 for c in nodes: tree.insert(c)

 shownodes(nodes)

 tree.view()

def test4_binary():

 tree = BinaryTree(viewer)

 import random # make a big binary tree

 nodes = range(100) # insert 100 nodes at random

 order = [] # and sketch in viewer

 while nodes:

 item = random.choice(nodes)

 nodes.remove(item)

 tree.insert(item)

 order.append(item)

 shownodes(order)

 tree.view()

def test_parser(expr):

 parser = parser2.Parser() # tree type is parser wrapper

 parser.lex.newtext(expr) # subtrees evaluate when clicked

 tree = parser.analyse() # input line parses new expr

 entry.delete(0, END) # vars set in wrapper dictionary

 entry.insert(0, expr) # see lang/text chapter for parser

 if tree: viewer.drawTree(tree)

def test1_parser(): test_parser("1 + 3 * (2 * 3 + 4)")

def test2_parser(): test_parser("set temp 1 + 3 * 2 * 3 + 4")

def test3_parser(): test_parser("set result temp + ((1 + 3) * 2) * (3 + 4)")

build viewer with extra widgets to test tree types

if __name__ == '__main__':

 root = Tk() # build a single viewer GUI

 bwrapper = BinaryTreeWrapper() # add extras: input line, test btns

 pwrapper = ParseTreeWrapper() # make wrapper objects

 viewer = TreeViewer(bwrapper, root) # start out in binary mode

 def onRadio():

 if var.get() == 'btree':

 viewer.setTreeType(bwrapper) # change viewer's wrapper

 for btn in p_btns: btn.pack_forget() # erase parser test buttons

 for btn in b_btns: btn.pack(side=LEFT) # unhide binary buttons

 elif var.get() == 'ptree':

 viewer.setTreeType(pwrapper)

 for btn in b_btns: btn.pack_forget()

 for btn in p_btns: btn.pack(side=LEFT)

 var = StringVar()

 var.set('btree')

 Radiobutton(root, text='Binary', command=onRadio,

 variable=var, value='btree').pack(side=LEFT)

 Radiobutton(root, text='Parser', command=onRadio,

 variable=var, value='ptree').pack(side=LEFT)

 b_btns = []

 b_btns.append(Button(root, text='test1', command=test1_binary))

 b_btns.append(Button(root, text='test2', command=test2_binary))

 b_btns.append(Button(root, text='test3', command=test3_binary))

 b_btns.append(Button(root, text='test4', command=test4_binary))

 p_btns = []

 p_btns.append(Button(root, text='test1', command=test1_parser))

 p_btns.append(Button(root, text='test2', command=test2_parser))

 p_btns.append(Button(root, text='test3', command=test3_parser))

 onRadio()

 def onInputLine():

 line = entry.get() # use per current tree wrapper type

 viewer.onInputLine(line) # type a node list or expression

 Button(root, text='input', command=onInputLine).pack(side=RIGHT)

 entry = Entry(root)

 entry.pack(side=RIGHT, expand=YES, fill=X)

 entry.bind('<Return>', lambda event: onInputLine()) # button or enter key

 root.mainloop() # start up the GUI

PyTree Does Parse Trees Too

Finally, I want to show you what happens when you click the Parser radio button in the PyTree window.

The GUI changes over to an expression parse tree viewer by simply using a different tree wrapper class: the

label at the top changes, the test buttons change, and input is now entered as an arithmetic expression to be

parsed and sketched. Figure 20-5 shows a tree generated for the expression string displayed in the input

field.

[[]]

Figure Error! No text of specified style in document.-4. PyTree viewing an expression

parse tree

PyTree is designed to be generic—it displays both binary and parse trees, but it is easy to extend for new

tree types with new wrapper classes. On the GUI, you can switch between binary and parser tree types at

any time by clicking the radio buttons. Input typed into the input field is always evaluated according to the

current tree type. When the viewer is in parse tree mode, clicking on a node in the tree evaluates the part of

the expression represented by the parse tree rooted at the node you clicked. Figure 20-6 shows the pop up

you get when you click the root node of the tree displayed.

[[]]

Figure Error! No text of specified style in document.-5. PyTree pop up after clicking a

parse tree node

When viewing parse trees, PyTree becomes a sort of visual calculator—you can generate arbitrary

expression trees and evaluate any part of them by clicking on nodes displayed. But at this point, there is not

much more I can tell you about these kinds of trees until you move on to Chapter 21.

