
816
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 14

14
Larger Web Site
Examples II

“Typos Happen”
This chapter presents the second of two server-side Python web programming
case studies. It covers the design and implementation of PyErrata, a CGI-based
web site implemented entirely in Python that allows users to post book comments
and error reports, and demonstrates the concepts underlying persistent database
storage in the CGI world. As we’ll see, this case study teaches both server-side
scripting and Python development techniques.

The PyErrata Web Site
The last chapter concluded with a discussion of the downsides of deploying appli-
cations on the Web. But now that I’ve told you all the reasons you might not want
to design systems for the Web, I’m going to completely contradict myself and
present a system that cries out for a web-based implementation. This chapter pre-
sents the PyErrata web site, a Python program that lets arbitrary people on arbi-
trary machines submit book comments and bug reports (usually called errata)
over the Web, using just a web browser.

PyErrata is in some ways simpler than the PyMailCgi case study presented in the
previous chapter. From a user’s perspective, PyErrata is more hierarchical than lin-
ear: user interactions are shorter and spawn fewer pages. There is also little state
retention in web pages themselves in PyErrata; URL parameters pass state in only
one isolated case, and no hidden form fields are generated.

On the other hand, PyErrata introduces an entirely new dimension: persistent data
storage. State (error and comment reports) is stored permanently by this system on

,ch14.17404 Page 816 Wednesday, February 7, 2001 2:54 PM

The PyErrata Web Site 817

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the server, either in flat pickle files or a shelve-based database. Both raise the
specter of concurrent updates, since any number of users out in cyberspace may
be accessing the site at the same time.

System Goals
Before you ponder too long over the seeming paradox of a book that comes with
its own bug-reporting system, I should provide a little background. Over the last
five years, I’ve been fortunate enough to have had the opportunity to write four
books, a large chapter in a reference book, and various magazine articles and
training materials. Changes in the Python world have also provided opportunities
to rewrite books from the ground up. It’s been both wildly rewarding and lucra-
tive work (well, rewarding, at least).

But one of the first big lessons one learns upon initiation in the publishing busi-
ness is that typos are a fact of life. Really. No matter how much of a perfectionist
you are, books will have bugs. Furthermore, big books tend to have more bugs
than little books, and in the technical publishing domain, readers are often suffi-
ciently savvy and motivated to send authors email when they find those bugs.

That’s a terrific thing, and helps authors weed out typos in reprints. I always
encourage and appreciate email from readers. But I get lots of email—at times, so
much so that given my schedule, I find it difficult to even reply to every message,
let alone investigate and act on every typo report. I get lots of other email too, and
can miss a reader’s typo report if I’m not careful.

About a year ago, I realized that I just couldn’t keep up with all the traffic and
started thinking about alternatives. One obvious way to cut down on the over-
head of managing reports is to delegate responsibility—to offload at least some
report-processing tasks to the people who generate the reports. That is, I needed
to somehow provide a widely available system, separate from my email account,
that automates report posting and logs reports to be reviewed as time allows.

Of course, that’s exactly the sort of need that the Internet is geared to. By imple-
menting an error-reporting system as a web site, any reader can visit and log
reports from any machine with a browser, whether they have Python installed or
not. Moreover, those reports can be logged in a database at the web site for later
inspection by both author and readers, instead of requiring manual extraction from
incoming email.

The implementation of these ideas is the PyErrata system—a web site imple-
mented with server-side Python programs. PyErrata allows readers to post bug
reports and comments about this edition of Programming Python, as well as view
the collection of all prior posts by various sort keys. Its goal is to replace the tradi-
tional errata list pages I’ve had to maintain manually for other books in the past.

,ch14.17404 Page 817 Wednesday, February 7, 2001 2:54 PM

818 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

More than any other web-based example in this book, PyErrata demonstrates just
how much work can be saved with a little Internet scripting. To support the first
edition of this book, I hand-edited an HTML file that listed all known bugs. With
PyErrata, server-side programs generate such pages dynamically from a user-popu-
lated database. Because list pages are produced on demand, PyErrata not only
publishes and automates list creation, it also provides multiple ways to view report
data. I wouldn’t even try to reorder the first edition’s static HTML file list.

PyErrata is something of an experiment in open systems, and as such is vulnera-
ble to abuse. I still have to manually investigate reports, as time allows. But it at
least has the potential to ease one of the chores that generally goes unmentioned
in typical publishing contracts.

Implementation Overview

Like other web-based systems in this part of the book, PyErrata consists of a col-
lection of HTML files, Python utility modules, and Python-coded CGI scripts that
run on a shared server instead of on a client. Unlike those other web systems,
PyErrata also implements a persistent database and defines additional directory
structures to support it. Figure 14-1 shows the top-level contents of the site, seen
on Windows from a PyEdit Open dialog.

You will find a similar structure on this book’s CD-ROM. To install this site on the
Net, all the files and directories you see here are uploaded to the server machine
and stored in a PyErrata subdirectory within the root of the directory that is

Figure 14-1. PyErrata site contents

,ch14.17404 Page 818 Wednesday, February 7, 2001 2:54 PM

The PyErrata Web Site 819

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

exposed to the Web (my public_html directory). The top-level files of this site
implement browse and submit operations as well as database interfaces. A few
resource page files and images show up in this listing too, but are ignored in this
book. Besides files, this site has subdirectories of its own:

• Mutex is a Python package that contains a mutual-exclusion utility module
used for shelves, as well as test scripts for this utility model.

• AdminTools includes system utility scripts that are run standalone from the
command line.

• DbaseFiles holds the file-based database, with separate subdirectories for
errata and comment pickle files.

• DbaseShelve contains the shelve-based database, with separate shelve files for
errata and comments.

We’ll meet the contents of the database subdirectories later in this chapter, when
exploring the database implementation.

Presentation Strategy

PyErrata takes logic factoring, code reuse, and encapsulation to extremes. Top-
level scripts, for example, are often just a few lines long and ultimately invoke
generic logic in common utility modules. With such an architecture, mixing short
code segments with lots of screen shots makes it tough to trace the flow of con-
trol through the program.

To make this system easier to study, we’re going to take a slightly different
approach here. PyErrata’s implementation will be presented in three main sections
corresponding to major functional areas of the system: report browsing, report
submission, and database interfaces. The site root page will be shown before these
three sections, but mostly just for context; it’s simple, static HTML.

Within the browsing and submission sections, all user interaction models (and
screen shots) are shown first, followed by all the source code used to implement
that interaction. Like the PyForm example in Chapter 16, Databases and Persis-
tence, PyErrata is at heart a database-access program, and its database interfaces
are ultimately the core of the system. Because these interfaces encapsulate most
low-level storage details, though, we’ll save their presentation for last.

Although you still may have to jump around some to locate modules across func-
tional boundaries, this organization of all the code for major chunks of the system
in their own sections should help minimize page-flipping.

,ch14.17404 Page 819 Wednesday, February 7, 2001 2:54 PM

820 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Root Page
Let’s start at the top. In this chapter we will study the complete implementation of
PyErrata, but readers are also encouraged to visit the web site where it lives to
sample the flavor of its interaction first-hand. Unlike PyMailCgi, there are no pass-
word constraints in PyErrata, so you can access all of its pages without any config-
uration steps.

PyErrata installs as a set of HTML files and Python CGI scripts, along with a few
image files. As usual, you can simply point your web browser to the system’s root
page to run the system live while you study this chapter. Its root page currently
lives here:*

http://starship.python.net/~lutz/PyErrata/pyerrata.html

If you go to this address, your browser will be served the page shown in
Figure 14-2. PyErrata supports both submission and browsing of comments and

Use the Source, Luke
I want to insert the standard case-study caveat here: although this chapter does
explain major concepts along the way, understanding the whole story is left
partly up to you. As always, please consult the source code listings in this chap-
ter (and on the CD) for details not spelled out explicitly. I’ve taken this minimal
approach deliberately, mostly because I assume you already know a lot about
CGI scripting and the Python language by this point in the book, but also
because real-world development time is spent as much on reading other peo-
ple’s code as on writing your own. Python makes both tasks relatively easy,
but now is your chance to see how for yourself.

I also wish to confess right off that this chapter has a hidden agenda. PyErrata
not only shows more server-side scripting techniques, but also illustrates com-
mon Python development concepts at large. Along the way, we focus on this
system’s current software architecture and point out a variety of design alter-
natives. Be sure to pay special attention to the way that logic has been layered
into multiple abstraction levels. For example, by separating database and user-
interface (page generation) code, we minimize code redundancy and cross-
module dependencies and maximize code reuse. Such techniques are useful
in all Python systems, web-based or not.

* But be sure to see this book’s web site, http://rmi.net/~lutz/about-pp.html, for an updated link if the
one listed here no longer works by the time you read this book. Web sites seem to change addresses
faster than developers change jobs.

,ch14.17404 Page 820 Wednesday, February 7, 2001 2:54 PM

The Root Page 821

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

error reports; the four main links on this page essentially provide write and read
access to its databases over the Web.

The static HTML code file downloaded to produce this page is listed in
Example 14-1. The only parts we’re interested in are shown in bold: links to the
submission and browsing pages for comments and errata. There is more to this
page, but we’re only dealing with the parts shown in the screen shot. For instance,
the site will eventually also include resource page HTML files (e.g., Python
resources and changes), but we’ll ignore those components in this book.

Figure 14-2. PyErrata main page

Example 14-1. PP2E\Internet\Cgi-Web\PyErrata\pyerrata.html

<HTML><BODY>
<TITLE>PyErrata: PP2E Errata Page</TITLE>
<H1 align=center>PyErrata</H1>
<H2 align=center>The PP2E Updates Page</H2>
<P align=center><I>Version 1.0, November 1999</I></P>

<HR><P>

,ch14.17404 Page 821 Wednesday, February 7, 2001 2:54 PM

822 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Browsing PyErrata Reports
On to the first major system function: browsing report records. Before we study
the code used to program browse operations, let’s get a handle on the sort of user

Welcome. This is the official place where corrections, supplements,
and other supporting information for the book <I>Programming Python,
2nd Edition</I> are maintained. This site is also described in the book:
most of its interaction is implemented in
Python as server-side
CGI scripts, and most submitted information is stored in files on the starship
server.
<P>
You may both browse items, and submit new ones here. This site is primarily
used for automatic, reader-controlled tracking of book corrections ("errata");
if you find a bug, please take a moment to fill out the errata submission
form, so we can fix it in a later printing. Select a link below to submit
or browse book-related items.
</P>
<HR>

<H2>Submit</H2>

Errata report
General comment

<H2>Browse</H2>

Errata reports
General comments

<H2>Library</H2>

Supplements
Python changes
Program patch files

<HR>

<IMG SRC="PythonPoweredSmall.gif"
 ALIGN=left ALT="[Python Logo]" border=0 hspace=10>
More examples
</BODY></HTML>

Example 14-1. PP2E\Internet\Cgi-Web\PyErrata\pyerrata.html (continued)

,ch14.17404 Page 822 Wednesday, February 7, 2001 2:54 PM

Browsing PyErrata Reports 823

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

interaction it is designed to produce. If you’re the sort that prefers to jump into
code right away, it’s okay to skip the next two sections for now, but be sure to
come back here to refer to the screen shots as you study code listed later.

User Interface: Browsing Comment Reports

As shown in Figure 14-2, PyErrata lets us browse and submit two kinds of reports:
general comments and errata (bug) reports. Clicking the “General comments” link
in the Browse section of the root page brings up the page shown in Figure 14-3.

Now, the first thing you should know about PyErrata’s browse feature is that it
allows users to query and view the report database in multiple ways. Reports may
be ordered by any report field and displayed in three different formats. The top-
level browse pages essentially serve to configure a query against the report data-
base and the presentation of its result.

Figure 14-3. Browse comments, selection page

,ch14.17404 Page 823 Wednesday, February 7, 2001 2:54 PM

824 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To specify an ordering, first select a sort criterion: a report field name by which
report listings are ordered. Fields take the form of radio buttons on this page. To
specify a report display format, select one of three option buttons:

• Simple list yields a simple sorted list page.

• With index generates a sorted list page, with hyperlinks at the top that jump to
the starting point of each sort key value in the page when clicked.

• Index only produces a page containing only hyperlinks for each sort key
value, which fetch and display matching records when clicked.

Figure 14-4 shows the simple case produced by clicking the “Submit date” sort key
button, selecting the “Simple list” display option, and pressing the Submit Query
button to contact a Python script on the server. It’s a scrollable list of all comment
reports in the database ordered by submission date.

Figure 14-4. Browse comments, “Simple list” option

,ch14.17404 Page 824 Wednesday, February 7, 2001 2:54 PM

Browsing PyErrata Reports 825

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In all query results, each record is displayed as a table of attribute field values (as
many as are present in the record) followed by the text of the record’s description
field. The description is typically multiple lines long, so it’s shown separately and
without any HTML reformatting (i.e., as originally typed). If there are multiple
records in a list, they are separated by horizontal lines.

Simple lists like this work well for small databases, but the other two display
options are better suited to larger report sets. For instance, if we instead pick the
“With index” option, we are served up a page that begins with a list of links to
other locations in the page, followed by a list of records ordered and grouped by
a sort key’s value. Figure 14-5 shows the “With index” option being used with the
“Report state” sort key.

To view reports, the user can either scroll through the list or click on one of the
links at the top; they follow in-page hyperlinks to sections of the report list where a

Figure 14-5. Browse comments, “With index” option

,ch14.17404 Page 825 Wednesday, February 7, 2001 2:54 PM

826 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

given key value’s records begin. Internally, these hyperlinks use file.
html#section section-link syntax that is supported by most browsers, and in-page
tags. The important parts of the generated HTML code look like this:

<title>PP2E Comment list</title>
<h1>Comment list, sorted by "Report state"</h1><hr>
<h2>Index</h2>
Not yet verified
Rejected - not a real bug
Verified by author
<hr>
<h2>Key = "Not yet verified"</h2><hr>
<p><table border>
<tr><th align=right>Submit date:<td>1999/09/21, 06:07:43
...more...

Figure 14-6 shows the result of clicking one such link in a page sorted instead by
submit date. Notice the #S4 at the end of the result’s URL. We’ll see how these
tags are automatically generated in a moment.

For very large databases, it may be impractical to list every record’s contents on
the same page; the third PyErrata display format option provides a solution.
Figure 14-7 shows the page produced by the “Index only” display option, with
“Submit date” chosen for report order. There are no records on this page, just a list
of hyperlinks that “know” how to fetch records with the listed key value when
clicked. They are another example of what we’ve termed smart links—they embed
key and value information in the hyperlink’s URL.

PyErrata generates these links dynamically; they look like the following, except
that I’ve added line-feeds to make them more readable in this book:

<title>PP2E Comment list</title>
<h1>Comment list, sorted by "Submit date"</h1><hr>
<h2>Index</h2>
<a href="index.cgi?kind=Comment&
 sortkey=Submit+date&
 value=1999/09/21,+06%3a06%3a50">1999/09/21, 06:06:50
<a href="index.cgi?kind=Comment&
 sortkey=Submit+date&
 value=1999/09/21,+06%3a07%3a22">1999/09/21, 06:07:22
...more...
<hr>

Note the URL-encoded parameters in the links this time; as you’ll see in the code,
this is Python’s urllib module at work again. Also notice that unlike the last
chapter’s PyMailCgi example, PyErrata generates minimal URLs in lists (without
server and path names—they are inferred and added by the browser from the

,ch14.17404 Page 826 Wednesday, February 7, 2001 2:54 PM

Browsing PyErrata Reports 827

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

prior page’s address). If you view the generated page’s source code, the underly-
ing smart links are more obvious; Figure 14-8 shows one such index page’s code.*

Clicking on a link in the “Index only” page fetches and displays all records in the
database with the displayed value in the displayed key field. For instance, press-
ing the second to last link in the index page (Figure 14-7) yields the page shown
in Figure 14-9. As usual, generated links appear in the address field of the result.

If we ask for an index based on field “Submitter name,” we generate similar results
but with different key values in the list and URLs; Figure 14-10 shows the result of

Figure 14-6. Browse comments, “With index” listing

* Like PyMailCgi, the & character in the generated URLs is not escaped by PyErrata, since its parameter
name doesn’t clash with HTML character escape names. If yours might, be sure to use cgi.escape on
URLs to be inserted into web pages.

,ch14.17404 Page 827 Wednesday, February 7, 2001 2:54 PM

828 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

clicking such an index page link. This is the same record as Figure 14-9, but was
accessed via name key, not submit date. By treating records generically, PyErrata
provides multiple ways to view and access stored data.

User Interface: Browsing Errata Reports

PyErrata maintains two distinct databases—one for general comments and one for
genuine error reports. To PyErrata, records are just objects with fields; it treats
both comments and errata the same, and is happy to use whatever database it is
passed. Because of that, the interface for browsing errata records is almost identi-
cal to that for comments, and as we’ll see in the implementation section, it largely
uses the same code.

Figure 14-7. Browse comments, “Index only” selection list

Figure 14-8. PyErrata generated links code

,ch14.17404 Page 828 Wednesday, February 7, 2001 2:54 PM

Browsing PyErrata Reports 829

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Errata reports differ, though, in the fields they contain. Because there are many
more fields that can be filled out here, the root page of the errata browse function

Figure 14-9. Browse comments, “Index only” link clicked

Figure 14-10. Browse comments, “Index only” page

,ch14.17404 Page 829 Wednesday, February 7, 2001 2:54 PM

830 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

is slightly different. As seen in Figure 14-11, sort fields are selected from a pull-
down selection list rather than radiobuttons. Every attribute of an errata report can
be used as a sort key, even if some reports have no value for the field selected.
Most fields are optional; as we’ll see later, reports with empty field values are
shown as value ? in index lists and grouped under value (none) in report lists.

Once we’ve picked a sort order and display format and submitted our query,
things look much the same as for comments (albeit with labels that say Errata
instead of Comment). For instance, Figure 14-12 shows the “With index” option for
errata sorted by submit date.

Clicking one of the links on this page leads to a section of the report page list, as
in Figure 14-13; again, the URL at the top uses #section hyperlinks.

The “Index only” mode works the same here too: Figure 14-14 shows the index
page for sort field “Chapter number”. Notice the “?” entry; if clicked, it will fetch
and display all records with an empty chapter number field. In the display, their
empty key values print as (none). In the database, it’s really an empty string.

Clicking on the “16” entry brings up all errata tagged with that chapter number in
the database; Figure 14-15 shows that only one was found this time.

Figure 14-11. Browse errata, selection page

,ch14.17404 Page 830 Wednesday, February 7, 2001 2:54 PM

Browsing PyErrata Reports 831

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Using Explicit URLs with PyErrata

Because Python’s cgi module treats form inputs and URL parameters the same
way, you can also use explicit URLs to generate most of the pages shown so far.
In fact, PyErrata does too; the URL shown at the top of Figure 14-15:

http://starship.python.net/~lutz/
 PyErrata/index.cgi?kind=Errata&sortkey=Chapter+number&value=16

was generated by PyErrata internally to represent a query to be sent to the next
script (mostly—the browser actually adds the first part, through PyErrata/). But
there’s nothing preventing a user (or another script) from submitting that fully
specified URL explicitly to trigger a query and reply. Other pages can be fetched
with direct URLs too; this one loads the index page itself:

http://starship.python.net/~lutz/
 PyErrata/browseErrata.cgi?key=Chapter+number&display=indexonly

Likewise, if you want to query the system for all comments submitted under a
given name, you can either navigate through the system’s query pages, or type a
URL like this:

http://starship.python.net/~lutz/
 PyErrata/index.cgi?kind=Comment&sortkey=Submitter+name&value=Bob

Figure 14-12. Browse errata, “With index” display

,ch14.17404 Page 831 Wednesday, February 7, 2001 2:54 PM

832 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Figure 14-13. Browse errata, report list

Figure 14-14. Browse errata, “Index only” link page

,ch14.17404 Page 832 Wednesday, February 7, 2001 2:54 PM

Browsing PyErrata Reports 833

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You’ll get a page with Python exception information if there are no matches for
the key and value in the specified database. If you instead just want to fetch a
comment list sorted by submit dates (e.g., to parse in another script), type this:

http://starship.python.net/~lutz/
 PyErrata/browseComments.cgi?key=Submit+date&display=list

If you access this system outside the scope of its form pages like this, be sure to
specify a complete URL and URL-encoded parameter values. There is no notion of
a prior page, and because most key values originate from values in user-provided
reports, they may contain arbitrary characters.

It’s also possible to use explicit URLs to submit new reports—each field may be
passed as a URL’s parameter to the submit script:

http://starship.python.net/~lutz/
 PyErrata/submitComment.cgi?Description=spam&Submitter+name=Bob

but we won’t truly understand what this does until we reach the section “Submit-
ting PyErrata Reports” later in this chapter.

Implementation: Browsing Comment Reports

Okay, now that we’ve seen the external behavior of the browse function, let’s roll
up our sleeves and dig into its implementation. The following sections list and

Figure 14-15. Browse errata, “Index only” link clicked

,ch14.17404 Page 833 Wednesday, February 7, 2001 2:54 PM

834 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

discuss the source code files that implement PyErrata browse operations. All of
these live on the web server; some are static HTML files and others are executable
Python scripts. As you read, remember to refer back to the user interface sections
to see the sorts of pages produced by the code.

As mentioned earlier, this system has been factored for reuse: top-level scripts
don’t do much but call out to generalized modules with appropriate parameters.
The database where submitted reports are stored is completely encapsulated as
well; we’ll study its implementation later in this chapter, but for now we can be
mostly ignorant of the medium used to store information.

The file in Example 14-2 implements the top-level comment browsing page.

This is straight and static HTML code, as opposed to a script (there’s nothing to
construct dynamically here). As with all forms, clicking its submit button triggers a
CGI script (Example 14-3) on the server, passing all the input fields’ values.

Example 14-2. PP2E\Internet\Cgi-Web\PyErrata\browseComments.html

<html><body bgcolor="#FFFFFF">
<title>PP2E Browse Comments</title>
<h1>PP2E Browse Comment Reports</h1>

<p>Please select the field you wish to sort by below, and press
the submit button to display comments. The display does not include
any emailed reports which have not been manually posted. Click
'With index' for a top-of-page index, or 'Index only' for an index
with links to individual pages.
</p>

<hr>
<form method=POST action="browseComments.cgi">
 <h3>Sort reports by:</h3>

 <p><input type=radio name=key value="Submit date" checked> Submit date
 <p><input type=radio name=key value="Submitter name"> Submitter name
 <p><input type=radio name=key value="Submitter email"> Submitter email
 <p><input type=radio name=key value="Report state"> Report state

 <h3>Display options:</h3>
 <p><input type=radio name=display value="list">Simple list
 <input type=radio name=display value="indexed" checked>With index
 <input type=radio name=display value="indexonly">Index only
 <p><input type=submit>
</form>

<hr>
Back to errata page
</body></html>

,ch14.17404 Page 834 Wednesday, February 7, 2001 2:54 PM

Browsing PyErrata Reports 835

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

There’s not much going on here, because all the machinery used to perform a
query has been split off to the browse module (shown in Example 14-6) so that it
can be reused to browse errata reports too. Internally, browsing both kinds of
records is handled the same way; here, we pass in only items that vary between
comment and errata browsing operations. Specifically, we pass in the comment
database object and a “Comment” label for use in generated pages. Module
browse is happy to query and display records from any database we pass to it.

The dbswitch module used here (and listed in Example 14-13) simply selects
between flat-file and shelve database mechanisms. By making the mechanism
choice in a single module, we need to update only one file to change to a new
medium; this CGI script is completely independent of the underlying database
mechanism. Technically, the object dbswitch.DbaseComment is a class object,
used later to construct a database interface object in the browse module.

Implementation: Browsing Errata Reports

The file in Example 14-4 implements the top-level errata browse page, used to
select a report sort order and display format. Fields are in a pull-down selection
list this time, but otherwise this page is similar to that for comments.

Example 14-3. PP2E\Internet\Cgi-Web\PyErrata\browseComments.cgi

#!/usr/bin/python

from dbswitch import DbaseComment # dbfiles or dbshelve
from browse import generatePage # reuse html formatter
generatePage(DbaseComment, 'Comment') # load data, send page

Example 14-4. PP2E\Internet\Cgi-Web\PyErrata\browseErrata.html

<html><body bgcolor="#FFFFFF">
<title>PP2E Browse Errata</title>
<h1>PP2E Browse Errata Reports</h1>

<p>Please select the field you wish to sort by below, and press
the submit button to display reports. The display does not include
any emailed reports which have not yet been manually posted. Click
'With index' for a top-of-page index, or 'Index only' for an index
with links to individual pages.
</p>

<hr>
<form method=POST action="browseErrata.cgi">
 <h3>Sort reports by:</h3>
 <select name=key>
 <option>Page number
 <option>Type
 <option>Submit date
 <option>Severity

,ch14.17404 Page 835 Wednesday, February 7, 2001 2:54 PM

836 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When submitted, the form in this HTML file invokes the script in Example 14-5 on
the server.

Again, there’s not much to speak of here. In fact, it’s nearly identical to the com-
ment browse script, because both use the logic split off into the browse module.
Here, we just pass a different database for the browse logic to process.

Common Browse Utility Modules

To fully understand how browse operations work, we need to explore the module
in Example 14-6, which is used by both comment and errata browse operations.

 <option>Chapter number
 <option>Part number
 <option>Printing date
 <option>Submitter name
 <option>Submitter email
 <option>Report state
 </select>
 <h3>Display options:</h3>
 <p><input type=radio name=display value="list">Simple list
 <input type=radio name=display value="indexed" checked>With index
 <input type=radio name=display value="indexonly">Index only
 <p><input type=submit>
</form>

<hr>
Back to errata page
</body></html>

Example 14-5. PP2E\Internet\Cgi-Web\PyErrata\browseErrata.cgi

#!/usr/bin/python

from dbswitch import DbaseErrata # dbfiles or dbshelve
from browse import generatePage # reuse html formatter
generatePage(DbaseErrata) # load data, send page

Example 14-6. PP2E\Internet\Cgi-Web\PyErrata\browse.py

###
on browse requests: fetch and display data in new page;
report data is stored in dictionaries on the database;
caveat: the '#Si' section links generated for top of page
indexes work on a recent Internet Explorer, but have been
seen to fail on an older Netscape; if they fail, try
using 'index only' mode, which uses url links to encode
information for creating a new page; url links must be
encoded with urllib, not cgi.escape (for text embedded in
the html reply stream; IE auto changes space to %20 when
url is clicked so '+' replacement isn't always needed,

Example 14-4. PP2E\Internet\Cgi-Web\PyErrata\browseErrata.html (continued)

,ch14.17404 Page 836 Wednesday, February 7, 2001 2:54 PM

Browsing PyErrata Reports 837

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

but urllib.quote_plus is more robust; web browser adds
http://server-name/root-dir/PyErrata/ to indexurl;
###

import cgi, urllib, sys, string
sys.stderr = sys.stdout # show errors in browser
indexurl = 'index.cgi' # minimal urls in links

def generateRecord(record):
 print '<p><table border>'
 rowhtml = '<tr><th align=right>%s:<td>%s\n'
 for field in record.keys():
 if record[field] != '' and field != 'Description':
 print rowhtml % (field, cgi.escape(str(record[field])))

 print '</table></p>'
 field = 'Description'
 text = string.strip(record[field])
 print '<p>%s
<pre>%s</pre><hr>' % (field, cgi.escape(text))

def generateSimpleList(dbase, sortkey):
 records = dbase().loadSortedTable(sortkey) # make list
 for record in records:
 generateRecord(record)

def generateIndexOnly(dbase, sortkey, kind):
 keys, index = dbase().loadIndexedTable(sortkey) # make index links
 print '<h2>Index</h2>' # for load on click
 for key in keys:
 html = '%s'
 htmlkey = cgi.escape(str(key))
 urlkey = urllib.quote_plus(str(key)) # html or url escapes
 urlsortkey = urllib.quote_plus(sortkey) # change spaces to '+'
 print html % (indexurl,
 kind, urlsortkey, (urlkey or '(none)'), (htmlkey or '?'))
 print '<hr>'

def generateIndexed(dbase, sortkey):
 keys, index = dbase().loadIndexedTable(sortkey)
 print '<h2>Index</h2>'
 section = 0 # make index
 for key in keys:
 html = '%s'
 print html % (section, cgi.escape(str(key)) or '?')
 section = section + 1
 print '<hr>'
 section = 0 # make details
 for key in keys:
 html = '<h2>Key = "%s"</h2><hr>'
 print html % (section, cgi.escape(str(key)))
 for record in index[key]:
 generateRecord(record)

Example 14-6. PP2E\Internet\Cgi-Web\PyErrata\browse.py (continued)

,ch14.17404 Page 837 Wednesday, February 7, 2001 2:54 PM

838 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This module in turn heavily depends on the top-level database interfaces we’ll
meet in a few moments. For now, all we need to know at this high level of
abstraction is that the database exports interfaces for loading report records and
sorting and grouping them by key values, and that report records are stored away
as dictionaries in the database with one key per field in the report. Two top-level
interfaces are available for accessing stored reports:

• dbase().loadSortedTable(sortkey) loads records from the generated
database interface object into a simple list, sorted by the key whose name is
passed in. It returns a list of record dictionaries sorted by a record field.

• dbase().loadIndexedTable(sortkey) loads records from the generated
database interface object into a dictionary of lists, grouped by values of the
passed-in key (one dictionary entry per sort key value). It returns both a dic-
tionary of record-dictionary lists to represent the grouping by key, as well as a
sorted-keys list to give ordered access into the groups dictionary (remember,
dictionaries are unordered).

The simple list display option uses the first call, and both index display options
use the second to construct key-value lists and sets of matching records. We will
see the implementation of these calls and record store calls later. Here, we only
care that they work as advertised.

 section = section + 1

def generatePage(dbase, kind='Errata'):
 form = cgi.FieldStorage()
 try:
 sortkey = form['key'].value
 except KeyError:
 sortkey = None

 print 'Content-type: text/html\n'
 print '<title>PP2E %s list</title>' % kind
 print '<h1>%s list, sorted by "%s"</h1><hr>' % (kind, str(sortkey))

 if not form.has_key('display'):
 generateSimpleList(dbase, sortkey)

 elif form['display'].value == 'list': # dispatch on display type
 generateSimpleList(dbase, sortkey) # dict would work here too

 elif form['display'].value == 'indexonly':
 generateIndexOnly(dbase, sortkey, kind)

 elif form['display'].value == 'indexed':
 generateIndexed(dbase, sortkey)

Example 14-6. PP2E\Internet\Cgi-Web\PyErrata\browse.py (continued)

,ch14.17404 Page 838 Wednesday, February 7, 2001 2:54 PM

Browsing PyErrata Reports 839

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Technically speaking, any mapping for storing a report record’s fields in the data-
base will do, but dictionaries are the storage unit in the system as currently coded.
This representation was chosen for good reasons:

• It blends well with the CGI form field inputs object returned by cgi.
FieldStorage. Submit scripts simply merge form field input dictionaries into
expected field dictionaries to configure a record.

• It’s more direct than other representations. For instance, it’s easy to generi-
cally process all fields by stepping through the record dictionary’s keys list,
while using classes and attribute names for fields is less direct and might
require frequent getattr calls.

• It’s more flexible than other representations. For instance, dictionary keys can
have values that attribute names cannot (e.g., embedded spaces), and so map
well to arbitrary form field names.

More on the database later. For the “Index only” display mode, the browse mod-
ule generates links that trigger the script in Example 14-7 when clicked. There isn’t
a lot to see in this file either, because most page generation is again delegated to
the generateRecord function in the browse module in Example 14-6. The
passed-in “kind” field is used to select the appropriate database object class to
query here; the passed-in sort field name and key values are then used to extract
matching records returned by the database interface.

Example 14-7. PP2E\Internet\Cgi-Web\PyErrata\index.cgi

#!/usr/bin/python
##
run when user clicks on a hyperlink generated for
index-only mode by browse.py; input parameters are
hard-coded into the link url, but there's nothing
stopping someone from creating a similar link on
their own--don't eval() inputs (security concern);
note that this script assumes that no data files
have been deleted since the index page was created;
cgi.FieldStorage undoes any urllib escapes in the
input parameters (%xx and '+' for spaces undone);
##

import cgi, sys, dbswitch
from browse import generateRecord
sys.stderr = sys.stdout
form = cgi.FieldStorage() # undoes url encoding

inputs = {'kind':'?', 'sortkey':'?', 'value':'?'}
for field in inputs.keys():
 if form.has_key(field):
 inputs[field] = cgi.escape(form[field].value) # adds html encoding

,ch14.17404 Page 839 Wednesday, February 7, 2001 2:54 PM

840 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In a sense, this index script is a continuation of browse, with a page in between.
We could combine these source files with a bit more work and complexity, but
their logic really must be run in distinct processes. In interactive client-side pro-
grams, a pause for user input might simply take the form of a function call (e.g., to
raw_input); in the CGI world, though, such a pause generally requires spawning
a distinct process to handle the input.

There are two additional points worth underscoring before we move on. First of
all, the “With index” option has its limitations. Notice how the browse module
generates in-page #section hyperlinks, and then tags each key’s section in the
records list with a header line that embeds an tag, using a
counter to generate unique section labels. This all relies on the fact that the data-
base interface knows how to return records grouped by key values (one list per
key). Unfortunately, in-page links like this may not work on all browsers (they’ve
failed on older Netscapes); if they don’t work in yours, use the “Index only”
option to access records by key groups.

The second point is that since all report fields are optional, the system must han-
dle empty or missing fields gracefully. Because submit scripts (described in the
next section) define a fixed set of fields for each record type, the database never
really has “missing” fields in records; empty fields are simply stored as empty
strings and omitted in record displays. When empty values are used in index lists,
they are displayed as ?; within key labels and URLs, they are denoted as string
(none), which is internally mapped to the empty string in the index and browse
modules just listed (empty strings don’t work well as URL parameters). This is sub-
tle, so see these modules for more details.

if inputs['kind'] == 'Errata':
 dbase = dbswitch.DbaseErrata
else:
 dbase = dbswitch.DbaseComment

print 'Content-type: text/html\n'
print '<title>%s group</title>' % inputs['kind']
print '<h1>%(kind)s list
For "%(sortkey)s" == "%(value)s"</h1><hr>' % inputs

keys, index = dbase().loadIndexedTable(inputs['sortkey'])
key = inputs['value']
if key == '(none)': key = ''
for record in index[key]:
 generateRecord(record)

Example 14-7. PP2E\Internet\Cgi-Web\PyErrata\index.cgi (continued)

,ch14.17404 Page 840 Wednesday, February 7, 2001 2:54 PM

Submitting PyErrata Reports 841

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

A word on redundancy. Notice that the list of possible sort fields dis-
played in the browse input pages is hardcoded into their HTML files.
Because the submit scripts we’ll explore next ensure that all records
in a database have the same set of fields, the HTML files’ lists will be
redundant with records stored away in the databases.

We could in principle build up the HTML sort field lists by inspect-
ing the keys of any record in the comment and errata databases
(much as we did in the language selector example in Chapter 12,
Server-Side Scripting), but that may require an extra database opera-
tion. These lists also partially overlap with the fields list in both sub-
mit page HTML and submit scripts, but seem different enough to
warrant some redundancy.

Submitting PyErrata Reports
The next major functional area in PyErrata serves to implement user-controlled
submission of new comment and errata reports. As before, let’s begin by getting a
handle on this component’s user-interface model before inspecting its code.

User Interface: Submitting Comment Reports

As we’ve seen, PyErrata supports two user functions: browsing the reports data-
base and adding new reports to it. If you click the “General comment” link in the
Submit section of the root page shown in Figure 14-2, you’ll be presented with the
comment submission page shown in Figure 14-16.

This page initially comes up empty; the data we type into its form fields is submit-
ted to a server-side script when we press the submit button at the bottom. If the
system was able to store the data as a new database record, a confirmation like the
one in Figure 14-17 is reflected back to the client.

All fields in submit forms are optional except one; if we leave the “Description”
field empty and send the form, we get the error page shown in Figure 14-18 (gen-
erated during an errata submission). Comments and error reports without descrip-
tions aren’t incredibly useful, so we kick such requests out. All other report fields
are stored empty if we send them empty (or missing altogether) to the submit
scripts.

Once we’ve submitted a comment, we can go back to the browse pages to view it
in the database; Figure 14-19 shows the one we just added, accessed by key “Sub-
mitter name” and in “With index” display format mode.

,ch14.17404 Page 841 Wednesday, February 7, 2001 2:54 PM

842 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Figure 14-16. Submit comments, input page

Figure 14-17. Submit comments, confirmation page

,ch14.17404 Page 842 Wednesday, February 7, 2001 2:54 PM

Submitting PyErrata Reports 843

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

User Interface: Submitting Errata Reports

Here again, the pages generated to submit errata reports are virtually identical to
the ones we just saw for submitting comments, as comments and errata are treated
the same within the system. Both are instances of generic database records with

Figure 14-18. Submit, missing field error page

Figure 14-19. Submit comments, verifying result

,ch14.17404 Page 843 Wednesday, February 7, 2001 2:54 PM

844 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

different sets of fields. But also as before, the top-level errata submission page dif-
fers, because there are many more fields that can be filled in; Figure 14-20 shows
the top of this input page.

There are lots of fields here, but only the description is required. The idea is that
users will fill in as many fields as they like to describe the problem; all text fields
default to an empty string if no value is typed into them. Figure 14-21 shows a
report in action with most fields filled with relevant information.

When we press the submit button, we get a confirmation page as before
(Figure 14-22), this time with text customized to thank us for an errata, not a com-
ment.

As before, we can verify a submission with the browse pages immediately after it
has been confirmed. Let’s bring up an index list page for submission dates and
click on the new entry at the bottom (Figure 14-23). Our report is fetched from the
errata database and displayed in a new page (Figure 14-24). Note that the display
doesn’t include a “Page number” field: we left it blank on the submit form. PyErrata
displays only nonempty record fields when formatting web pages. Because it treats

Figure 14-20. Submit errata, input page (top)

,ch14.17404 Page 844 Wednesday, February 7, 2001 2:54 PM

Submitting PyErrata Reports 845

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

all records generically, the same is true for comment reports; at its core, PyErrata is
a very generic system that doesn’t care about the meaning of data stored in records.

Because not everyone wants to post to a database viewable by everyone in the
world with a browser, PyErrata also allows both comments and errata to be sent by
email instead of being automatically added to the database. If we click the “Email
report privately” checkbox near the bottom of the submit pages before submission,

Figure 14-21. Submit errata, input page (filled)

Figure 14-22. Submit errata, confirmation

,ch14.17404 Page 845 Wednesday, February 7, 2001 2:54 PM

846 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Figure 14-23. Submit errata, verify result (index)

Figure 14-24. Submit errata, verify result (record)

,ch14.17404 Page 846 Wednesday, February 7, 2001 2:54 PM

Submitting PyErrata Reports 847

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the report’s details are emailed to me (their fields show up as a message in my
mailbox), and we get the reply in Figure 14-25.

Finally, if the directory or shelve file that represents the database does not grant
write access to everyone (remember, CGI scripts run as user “nobody”), our scripts
won’t be able to store the new record. Python generates an exception, which is
displayed in the client’s browser because PyErrata is careful to route exception text
to sys.stdout. Figure 14-26 shows an exception page I received before making
the database directory in question writable with the shell command chmod 777
DbaseFiles/errataDB.

Figure 14-25. Submit errata, email mode confirmation

Figure 14-26. Submit errata, exception (need chmod 777 dir)

,ch14.17404 Page 847 Wednesday, February 7, 2001 2:54 PM

848 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Implementation: Submitting Comment Reports

Now that we’ve seen the external behavior of PyErrata submit operations, it’s time
to study their internal workings. Top-level report submission pages are defined by
static HTML files. Example 14-8 shows the comment page’s file.

The CGI script that is invoked when this file’s form is submitted, shown in
Example 14-9, does the work of storing the form’s input in the database and gen-
erating a reply page.

Example 14-8. PP2E\Internet\Cgi-Web\PyErrata\submitComment.html

<html><body bgcolor="#FFFFFF">
<title>PP2E Submit Comment</title>
<h1>PP2E Submit Comment</h1>

<p>Please fill out the form below and press the submit button to
send your information. By default, your report will be automatically
entered in a publically browsable database, where it will eventually
be reviewed by the author. If you prefer to send your comments to the
author by private email instead, click the "Email" button before you
submit. All the fields except the description text are optional.
Thank you for your report.
</p>

<hr>
<form method=POST action="submitComment.cgi">
 <table>
 <tr>
 <th align=right>Description:
 <td><textarea name="Description" cols=40 rows=10>Type your comment here
 </textarea>
 <tr>
 <th align=right>Your name:
 <td><input type=text size=35 name="Submitter name">
 <tr>
 <th align=right>Your email, webpage:
 <td><input type=text size=35 name="Submitter email">
 <tr>
 <th align=right>Email report privately?:
 <td><input type=checkbox name="Submit mode" value="email">
 <tr>
 <th></th>
 <td><input type=submit value="Submit Comment">
 <input type=reset value="Reset Form">
 </table>
</form>

<hr>
Back to errata page
</body></html>

,ch14.17404 Page 848 Wednesday, February 7, 2001 2:54 PM

Submitting PyErrata Reports 849

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Don’t look too hard for database or HTML-generation code here; it’s all been fac-
tored out to the submit module, listed in a moment, so it can be reused for errata
submissions too. Here, we simply pass it things that vary between comment and
errata submits: database, expected input fields, and reply text.

As before, the database interface object is fetched from the switch module to select
the currently supported storage medium. Customized text for confirmation pages
(replyStored, replyMailed) winds up in web pages and is allowed to vary per
database.

The inputs dictionary in this script provides default values for missing fields and
defines the format of comment records in the database. In fact, this dictionary is
stored in the database: within the submit module, input fields from the form or an
explicit URL are merged in to the inputs dictionary created here, and the result is
written to the database as a record.

Example 14-9. PP2E\Internet\Cgi-Web\PyErrata\submitComment.cgi

#!/usr/bin/python

DEBUG=0
if DEBUG:
 import sys
 sys.stderr = sys.stdout
 print "Content-type: text/html"; print

import traceback
try:
 from dbswitch import DbaseComment # dbfiles or dbshelve
 from submit import saveAndReply # reuse save logic

 replyStored = """
 Your comment has been entered into the comments database.
 You may view it by returning to the main errata page, and
 selecting Browse/General comments, using your name, or any
 other report identifying information as the browsing key."""

 replyMailed = """
 Your comment has been emailed to the author for review.
 It will not be automatically browsable, but may be added to
 the database anonymously later, if it is determined to be
 information of general use."""

 inputs = {'Description':'', 'Submit mode':'',
 'Submitter name':'', 'Submitter email':''}

 saveAndReply(DbaseComment, inputs, replyStored, replyMailed)

except:
 print "\n\n<PRE>"
 traceback.print_exc()

,ch14.17404 Page 849 Wednesday, February 7, 2001 2:54 PM

850 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

More specifically, the submit module steps through all keys in inputs and picks
up values of those keys from the parsed form input object, if present. The result is
that this script guarantees that records in the comments database will have all the
fields listed in inputs, but no others. Because all submit requests invoke this
script, this is true even if superfluous fields are passed in an explicit URL; only
fields in inputs are stored in the database.

Notice that almost all of this script is wrapped in a try statement with an empty
except clause. This guarantees that every (uncaught) exception that can possibly
happen while our script runs will return to this try and run its exception handler;
here, it runs the standard traceback.print_exc call to print exception details to
the web browser in unformatted (<PRE>) mode.

Implementation: Submitting Errata Reports

The top-level errata submission page in Figures 14-20 and 14-21 is also rendered
from a static HTML file on the server, listed in Example 14-10. There are more
input fields here, but it’s similar to comments.

Example 14-10. PP2E\Internet\Cgi-Web\PyErrata\submitErrata.html

<html><body bgcolor="#FFFFFF">
<title>PP2E Submit Errata</title>
<h1>PP2E Submit Errata Report</h1>

<p>Please fill out the form below and press the submit button to
send your information. By default, your report will be automatically
entered in a publically browsable database, where it will eventually
be reviewed and verified by the author. If you prefer to send your
comments to the author by private email instead, click the "Email"
button before you submit.

<p>All the fields except the description text are optional;
for instance, if your note applies to the entire book, you can leave
the page, chapter, and part numbers blank. For the printing date, see
the lower left corner of one of the first few pages; enter a string of
the form mm/dd/yy. Thank you for your report.
</p>

<hr>
<form method=POST action="submitErrata.cgi">
 <table>
 <tr>
 <th align=right>Problem type:
 <td><select name="Type">
 <option>Typo
 <option>Grammar
 <option>Program bug
 <option>Suggestion
 <option>Other

,ch14.17404 Page 850 Wednesday, February 7, 2001 2:54 PM

Submitting PyErrata Reports 851

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The script triggered by the form on this page, shown in Example 14-11, also looks
remarkably similar to the submitComment script shown in Example 14-9. Because
both scripts simply use factored-out logic in the submit module, all we need do
here is pass in appropriately tailored confirmation pages text and expected input
fields. As before, real CGI inputs are merged into the script’s inputs dictionary to
yield a database record; the stored record will contain exactly the fields listed here.

 </select>
 <tr>
 <th align=right>Problem severity:
 <td><select name="Severity">
 <option>Low
 <option>Medium
 <option>High
 <option>Unknown
 </select>
 <tr>
 <th align=right>Page number:
 <td><input type=text name="Page number">
 <tr>
 <th align=right>Chapter number:
 <td><input type=text name="Chapter number">
 <tr>
 <th align=right>Part number:
 <td><input type=text name="Part number">
 <tr>
 <th align=right>Printing date:
 <td><input type=text name="Printing date">
 <tr>
 <th align=right>Description:
 <td><textarea name="Description" cols=60 rows=10>Type a description here
 </textarea>
 <tr>
 <th align=right>Your name:
 <td><input type=text size=40 name="Submitter name">
 <tr>
 <th align=right>Your email, webpage:
 <td><input type=text size=40 name="Submitter email">
 <tr>
 <th align=right>Email report privately?:
 <td><input type=checkbox name="Submit mode" value="email">
 <tr>
 <th></th>
 <td><input type=submit value="Submit Report">
 <input type=reset value="Reset Form">
 </table>
</form>

<hr>
Back to errata page
</body></html>

Example 14-10. PP2E\Internet\Cgi-Web\PyErrata\submitErrata.html (continued)

,ch14.17404 Page 851 Wednesday, February 7, 2001 2:54 PM

852 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Common Submit Utility Module

Both comment and errata reports ultimately invoke functions in the module in
Example 14-12 to store to the database and generate a reply page. Its primary goal
is to merge real CGI inputs into the expected inputs dictionary and post the result
to the database or email. We’ve already described the basic ideas behind this mod-
ule’s code, so we don’t have much new to say here.

Notice, though, that email-mode submissions (invoked when the submit page’s
email checkbox is checked) use an os.popen shell command call to send the
report by email; messages arrive in my mailbox with one line per nonempty report

Example 14-11. PP2E\Internet\Cgi-Web\PyErrata\submitErrata.cgi

#!/usr/bin/python

DEBUG=0
if DEBUG:
 import sys
 sys.stderr = sys.stdout
 print "Content-type: text/html"; print

import traceback
try:
 from dbswitch import DbaseErrata # dbfiles or dbshelve
 from submit import saveAndReply # reuse save logic

 replyStored = """
 Your report has been entered into the errata database.
 You may view it by returning to the main errata page, and
 selecting Browse/Errata reports, using your name, or any
 other report identifying information as the browsing key."""

 replyMailed = """
 Your report has been emailed to the author for review.
 It will not be automatically browsable, but may be added to
 the database anonymously later, if it is determined to be
 information of general interest."""

 # 'Report state' and 'Submit date' are added when written

 inputs = {'Type':'', 'Severity':'',
 'Page number':'', 'Chapter number':'', 'Part number':'',
 'Printing Date':'', 'Description':'', 'Submit mode':'',
 'Submitter name':'', 'Submitter email':''}

 saveAndReply(DbaseErrata, inputs, replyStored, replyMailed)

except:
 print "\n\n<pre>"
 traceback.print_exc()

,ch14.17404 Page 852 Wednesday, February 7, 2001 2:54 PM

Submitting PyErrata Reports 853

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

field. This works on my Linux web server, but other mail schemes such as the
smptlib module (discussed in Chapter 11, Client-Side Scripting) are more portable.

Example 14-12. PP2E\Internet\Cgi-Web\PyErrata\submit.py

###
on submit request: store or mail data, send reply page;
report data is stored in dictionaries on the database;
we require a description field (and return a page with
an error message if it's empty), even though the dbase
mechanism could handle empty description fields--it
makes no sense to submit a bug without a description;
###

import cgi, os, sys, string
mailto = 'lutz@rmi.net' # or lutz@starship.python.net
sys.stderr = sys.stdout # print errors to browser
print "Content-type: text/html\n"

thankyouHtml = """
<TITLE>Thank you</TITLE>
<H1>Thank you</H1>
<P>%s</P>
<HR>"""

errorHtml = """
<TITLE>Empty field</TITLE>
<H1>Error: Empty %s</H1>
<P>Sorry, you forgot to provide a '%s' value.
Please go back to the prior page and try again.</P>
<HR>"""

def sendMail(inputs): # email data to author
 text = '' # or 'mailto:' form action
 for key, val in inputs.items(): # or smtplib.py or sendmail
 if val != '':
 text = text + ('%s = %s\n' % (key, val))
 mailcmd = 'mail -s "PP2E Errata" %s' % mailto
 os.popen(mailcmd, 'w').write(text)

def saveAndReply(dbase, inputs, replyStored, replyMailed):
 form = cgi.FieldStorage()
 for key in form.keys():
 if key in inputs.keys():
 inputs[key] = form[key].value # pick out entered fields

 required = ['Description']
 for field in required:
 if string.strip(inputs[field]) == '':
 print errorHtml % (field, field) # send error page to browser
 break
 else:
 if inputs['Submit mode'] == 'email':
 sendMail(inputs) # email data direct to author

,ch14.17404 Page 853 Wednesday, February 7, 2001 2:54 PM

854 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This module makes use of one additional database interface to store record dictio-
naries: dbase().storeItem(inputs). However, we need to move on to the
next section to fully understand the processing that this call implies.

Another redundancy caveat: the list of expected fields in the inputs
dictionaries in submit scripts is the same as the input fields list in
submit HTML files. In principle again, we could instead generate the
HTML file’s fields list using data in a common module to remove this
redundancy. However, that technique may not be as directly useful
here, since each field requires description text in the HTML file only.

PyErrata Database Interfaces
Now that we’ve seen the user interfaces and top-level implementations of browse
and submit operations, this section proceeds down one level of abstraction to the
third and last major functional area in the PyErrata system.

Compared to other systems in this part of the book, one of the most unique tech-
nical features of PyErrata is that it must manage persistent data. Information posted
by readers needs to be logged in a database for later review. PyErrata stores
reports as dictionaries, and includes logic to support two database storage medi-
ums—flat pickle files and shelves—as well as tools for synchronizing data access.

The Specter of Concurrent Updates

There is a variety of ways for Python scripts to store data persistently: files, object
pickling, object shelves, real databases, and so on. In fact, Chapter 16, Databases
and Persistence, is devoted exclusively to this topic and provides more in-depth
coverage than we require here.* Those storage mediums all work in the context of
server-side CGI scripts too, but the CGI environment almost automatically intro-
duces a new challenge: concurrent updates. Because the CGI model is inherently

 print thankyouHtml % replyMailed
 else:
 dbase().storeItem(inputs) # store data in file on server
 print thankyouHtml % replyStored

* But see Chapter 16 if you could use a bit of background information on this topic. The current chapter
introduces and uses only the simplest interfaces of the object pickle and shelve modules, and most
module interface details are postponed until that later chapter.

Example 14-12. PP2E\Internet\Cgi-Web\PyErrata\submit.py (continued)

,ch14.17404 Page 854 Wednesday, February 7, 2001 2:54 PM

PyErrata Database Interfaces 855

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

parallel, scripts must take care to ensure that database writes and reads are prop-
erly synchronized to avoid data corruption and incomplete records.

Here’s why. With PyErrata, a given reader may visit the site and post a report or
view prior posts. But in the context of a web application, there is no way to know
how many readers may be posting or viewing at once: any number of people may
press a form’s submit button at the same time. As we’ve seen, form submissions
generally cause the HTTP server to spawn a new process to handle the request.
Because these handler processes all run in parallel, if one hundred users all press
submit at the same time, there will be one hundred CGI script processes running
in parallel on the server, all of which may try to update (or read) the reports data-
base at the same time.

Due to all this potential parallel traffic, server-side programs that maintain a data-
base must somehow guarantee that database updates happen one at a time, or the
database could be corrupted. The likelihood of two particular scenarios increases
with the number of site users:

• Concurrent writers: If two processes try to update the same file at once, we
may wind up with part of one process’s new data intermixed with another’s,
lose part of one process’s data, or otherwise corrupt stored data.

• Concurrent reader and writer: Similarly, if a process attempts to read a record
that is being written by another, it may fetch an incomplete report. In effect,
the database must be managed as a shared resource among all possible CGI
handler processes, whether they update or not.

Constraints vary per database medium, and while it’s generally okay for multiple
processes to read a database at the same time, writers (and updates in general)
almost always need to have exclusive access to a shared database. There is a vari-
ety of ways to make database access safe in a potentially concurrent environment
such as CGI-based web sites:

Database systems
If you are willing to accept the extra complexity of using a full-blown data-
base system in your application (e.g, Sybase, Oracle, mySql), most provide
support for concurrent access in one form or another.

Central database servers
It’s also possible to coordinate access to shared data stores by routing all data
requests to a perpetually running manager program that you implement your-
self. That is, each time a CGI script needs to hit the database, it must ask a data
server program for access via a communications protocol such as socket calls.

,ch14.17404 Page 855 Wednesday, February 7, 2001 2:54 PM

856 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

File naming conventions
If it is feasible to store each database record in a separate flat file, we can
sometimes avoid or minimize the concurrent access problems altogether by
giving each flat file a distinct name. For instance, if each record’s filename
includes both the file’s creation time and the ID of the process that created it,
it will be unique for all practical purposes, since a given process updates only
one particular file. In this scheme, we rely on the operating system’s filesys-
tem to make records distinct, by storing them in unique files.

File locking protocols
If the entire database is physically stored as a single file, we can use operat-
ing-system tools to lock the file during update operations. On Unix and Linux
servers, exclusively locking a file will block other processes that need it until
the lock is released; when used consistently by all processes, such a mecha-
nism automatically synchronizes database accesses. Python shelves support
concurrent readers but not concurrent updates, so we must add locks of our
own to use them as dynamic data stores in CGI scripting.

In this section, we implement both of the last two schemes for PyErrata to illus-
trate concurrent data-access fundamentals.

Database Storage Structure

First of all, let’s get a handle on what the system really stores. If you flip back to
Figure 14-1, you’ll notice that there are two top-level database directories:
DbaseShelve (for the shelve mechanism) and DbaseFiles (for file-based storage).
Each of these directories has unique contents.

Shelve database

For shelve-based databases, the DbaseShelve directory’s contents are shown in
Figure 14-27. The commentDB and errataDB files are the shelves used to store
reports, and the .lck and .log files are lock and log files generated by the system.
To start a new installation from scratch, only the two .lck files are needed ini-
tially (and can be simply empty files); the system creates the shelve and log files
as records are stored.

We’ll explore the Python shelve module in more detail in the next part of this
book, but the parts of it used in this chapter are straightforward. Here are the basic
shelve interfaces we’ll use in this example:

import shelve # load the standard shelve module
dbase = shelve.open('filename') # open shelve (create if doesn't yet exist)
dbase['key'] = object # store almost any object in shelve file
object = dbase['key'] # fetch object from shelve in future run
dbase.keys() # list of keys stored in the shelve
dbase.close() # close shelve's file

,ch14.17404 Page 856 Wednesday, February 7, 2001 2:54 PM

PyErrata Database Interfaces 857

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In other words, shelves are like dictionaries of Python objects that are mapped to
an external file, and so persist between program runs. Objects in a shelve are
stored away and later fetched with a key. In fact, it’s not inaccurate to think of
shelves as dictionaries that live on after a program exits, and must be explicitly
opened.

Like dictionaries, each distinct value stored in a shelve must have a unique key.
Because there is no field in a comment or errata report that is reliably unique
among all reports, we need to generate one of our own. Record submit time is
close to being unique, but there is no guarantee that two users (and hence two
processes) won’t submit a report in the same second.

To assign each record a unique slot in the shelve, the system generates a unique
key string for each, containing the submission time (seconds since the Unix
“epoch” as a floating-point value) and the process ID of the storing CGI script.
Since the dictionary values stored in the shelve contain all the report information
we’re interested in, shelve keys need only be unique, not meaningful. Records are
loaded by blindly iterating over the shelve’s keys list.

In addition to generating unique keys for records, shelves must accommodate con-
current updates. Because shelves are mapped to single files in the filesystem
(here, errataDB and commentDB), we must synchronize all access to them in a
potentially parallel process environment such as CGI scripting.

In its current form, the Python shelve module supports concurrent readers but not
concurrent updates, so we need to add such functionality ourselves. The PyErrata
implementation of the shelve database-storage scheme uses locks on the .lck files
to make sure that writers (submit processes) gain exclusive access to the shelve
before performing updates. Any number of readers may run in parallel, but writers

Figure 14-27. PyErrata shelve-based directory contents

,ch14.17404 Page 857 Wednesday, February 7, 2001 2:54 PM

858 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

must run alone and block all other processes—readers and writers—while they
update the shelve.

Notice that we use a separate .lck file for locks, rather than locking the shelve file
itself. In some systems, shelves are mapped to multiple files, and in others (e.g.,
GDBM), locks on the underlying shelve file are reserved for use by the DBM file-
system itself. Using our own lock file subverts such reservations and is more porta-
ble among DBM implementations.

Flat-file database

Things are different with the flat-files database medium; Figure 14-28 shows the
contents of the file-based errata database subdirectory, DbaseFiles/errataDB. In this
scheme, each report is stored in a distinct and uniquely named flat file containing a
pickled report-data dictionary. A similar directory exists for comments, DbaseFiles/
commentDB. To start from scratch here, only the two subdirectories must exist;
files are added as reports are submitted.

Python’s object pickler converts (“serializes”) in-memory objects to and from spe-
cially coded strings in a single step, and therefore comes in handy for storing com-
plex objects like the dictionaries PyErrata uses to represent report records.* We’ll

Figure 14-28. PyErrata file-based directory contents

* PyErrata could also simply write report record dictionaries to files with one field key and value per text
line, and split lines later to rebuild the record. It could also just convert the record dictionary to its string
representation with the str built-in function, write that string to the file manually, and convert the string
back to a dictionary later with the built-in eval function (which may or may not be slower, due to the
general parsing overhead of eval). As we’ll see in the next part of this book, though, object pickling is
a much more powerful and general approach to object storage—it also handles things like class instance
objects and shared and cyclic object references well. See table wrapper classes in the PyForm example
in Chapter 16 for similar topics.

,ch14.17404 Page 858 Wednesday, February 7, 2001 2:54 PM

PyErrata Database Interfaces 859

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

study the pickle module in depth in Part IV of this book too, but its interfaces
employed by PyErrata are simple as well:

pickle.dump(object, outputfile) # store object in a file
object = pickle.load(inputfile) # load object back from file

For flat files, the system-generated key assigned to a record follows the same for-
mat as for shelves, but here it is used to name the report’s file. Because of that,
record keys are more apparent (we see them when listing the directory), but still
don’t need to convey any real information. They need only be unique for each
stored record to yield a unique file. In this storage scheme, records are processed
by iterating over directory listings returned by the standard glob.glob call on
name pattern *.data (see Chapter 2, System Tools, for a refresher on the glob
module).

In a sense, this flat-file approach uses the filesystem as a shelve and relies on the
operating system to segregate records as files. It also doesn’t need to care much
about concurrent access issues; because generated filenames make sure that each
report is stored in its own separate file, it’s impossible for two submit processes to
be writing the same file at once. Moreover, it’s okay to read one report while
another is being created; they are truly distinct files.

We still need to be careful, though, to avoid making a file visible to reader direc-
tory listings until it is complete, or else we may read a half-finished file. This case
is unlikely in practice—it can happen only if the writer still hasn’t finished by the
time the reader gets around to that file in its directory listing. But to avoid prob-
lems, submit scripts first write data to a temporary file, and move the temporary
file to the real *.data name only after it is complete.

Database Switch

On to code listings. The first database module, shown in Example 14-13, simply
selects between a file-based mechanism and shelve-based mechanism; we make
the choice here alone to avoid impacting other files when we change storage
schemes.

Example 14-13. PP2E\Internet\Cgi-Web\PyErrata\dbswitch.py

##
for testing alternative underlying database mediums;
since the browse, submit, and index cgi scripts import
dbase names from here only, they'll get whatever this
module loads; in other words, to switch mediums, simply
change the import here; eventually we could remove this
interface module altogether, and load the best medium's
module directly, but the best may vary by use patterns;
##

,ch14.17404 Page 859 Wednesday, February 7, 2001 2:54 PM

860 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Storage-Specific Classes for Files and Shelves

The next two modules implement file- and shelve-based database-access objects;
the classes they define are the objects passed and used in the browse and submit
scripts. Both are really just subclasses of the more generic class in dbcommon; in
Example 14-14, we fill in methods that define storage scheme–specific behavior,
but the superclass does most of the work.

#
one directory per dbase, one flat pickle file per submit
#

from dbfiles import DbaseErrata, DbaseComment

#
one shelve per dbase, one key per submit, with mutex update locks
#

from dbshelve import DbaseErrata, DbaseComment

Example 14-14. PP2E\Internet\Cgi-Web\PyErrata\dbfiles.py

###
store each item in a distinct flat file, pickled;
dbcommon assumes records are dictionaries, but we don't here;
chmod to 666 to allow admin access (else 'nobody' owns);
subtlety: unique filenames prevent multiple writers for any
given file, but it's still possible that a reader (browser)
may try to read a file while it's being written, if the
glob.glob call returns the name of a created but still
incomplete file; this is unlikely to happen (the file
would have to still be incomplete after the time from glob
to unpickle has expired), but to avoid this risk, files are
created with a temp name, and only moved to the real name
when they have been completely written and closed;
cgi scripts with persistent data are prone to parallel
updates, since multiple cgi scripts may be running at once;
###

import dbcommon, pickle, glob, os

class Dbase(dbcommon.Dbase):
 def writeItem(self, newdata):
 name = self.dirname + self.makeKey()
 file = open(name, 'w')
 pickle.dump(newdata, file) # store in new file
 file.close()
 os.rename(name, name+'.data') # visible to globs
 os.chmod(name+'.data', 0666) # owned by 'nobody'

Example 14-13. PP2E\Internet\Cgi-Web\PyErrata\dbswitch.py (continued)

,ch14.17404 Page 860 Wednesday, February 7, 2001 2:54 PM

PyErrata Database Interfaces 861

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The shelve interface module listed in Example 14-15 provides the same methods
interface, but implements them to talk to shelves. Its class also mixes in the mutual-
exclusion class to get file locking; we’ll study that class’s code in a few pages.

Notice that this module extends sys.path so that a platform-specific FCNTL mod-
ule (described later in this chapter) becomes visible to the file-locking tools. This
is necessary in the CGI script context only, because the module search path given
to CGI user “nobody” doesn’t include the platform-specific extension modules
directory. Both the file and shelve classes set newly created file permissions to
octal 0666, so that users besides “nobody” can read and write. If you’ve forgotten
whom “nobody” is, see earlier discussions of permission and ownership issues in
this and the previous two chapters.

 def readTable(self):
 reports = []
 for filename in glob.glob(self.dirname + '*.data'):
 reports.append(pickle.load(open(filename, 'r')))
 return reports

class DbaseErrata(Dbase):
 dirname = 'DbaseFiles/errataDB/'

class DbaseComment(Dbase):
 dirname = 'DbaseFiles/commentDB/'

Example 14-15. PP2E\Internet\Cgi-Web\PyErrata\dbshelve.py

##
store items in a shelve, with file locks on writes;
dbcommon assumes items are dictionaries (not here);
chmod call assumes single file per shelve (e.g., gdbm);
shelve allows simultaneous reads, but if any program
is writing, no other reads or writes are allowed,
so we obtain the lock before all load/store ops
need to chown to 0666, else only 'nobody' can write;
this file doen't know about fcntl, but mutex doesn't
know about cgi scripts--one of the 2 needs to add the
path to FCNTL module for cgi script use only (here);
we circumvent whatever locking mech the underlying
dbm system may have, since we acquire alock on our own
non-dbm file before attempting any dbm operation;
allows multiple simultaneous readers, but writers
get exclusive access to the shelve; lock calls in
MutexCntl block and later resume callers if needed;
##

cgi runs as 'nobody' without
the following default paths
import sys
sys.path.append('/usr/local/lib/python1.5/plat-linux2')

Example 14-14. PP2E\Internet\Cgi-Web\PyErrata\dbfiles.py (continued)

,ch14.17404 Page 861 Wednesday, February 7, 2001 2:54 PM

862 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Top-Level Database Interface Class

Here, we reach the top-level database interfaces that our CGI scripts actually call.
The class in Example 14-16 is “abstract” in the sense that it cannot do anything by
itself. We must provide and create instances of subclasses that define storage-
specific methods, rather than making instances of this class directly.

In fact, this class deliberately leaves the underlying storage scheme undefined and
raises assertion errors if a subclass doesn’t fill in the required details. Any storage-
specific class that provides writeItem and readTable methods can be plugged
into this top-level class’s interface model. This includes classes that interface with
flat files, shelves, and other specializations we might add in the future (e.g.,
schemes that talk to full-blown SQL or object databases, or that cache data in per-
sistent servers).

In a sense, subclasses take the role of embedded component objects here; they
simply need to provide expected interfaces. Because the top-level interface has
been factored out to this single class, we can change the underlying storage
scheme simply by selecting a different storage-specific subclass (as in dbswitch);

import dbcommon, shelve, os
from Mutex.mutexcntl import MutexCntl

class Dbase(MutexCntl, dbcommon.Dbase): # mix mutex, dbcommon, mine
 def safe_writeItem(self, newdata):
 dbase = shelve.open(self.filename) # got excl access: update
 dbase[self.makeKey()] = newdata # save in shelve, safely
 dbase.close()
 os.chmod(self.filename, 0666) # else others can't change

 def safe_readTable(self):
 reports = [] # got shared access: load
 dbase = shelve.open(self.filename) # no writers will be run
 for key in dbase.keys():
 reports.append(dbase[key]) # fetch data, safely
 dbase.close()
 return reports

 def writeItem(self, newdata):
 self.exclusiveAction(self.safe_writeItem, newdata)

 def readTable(self):
 return self.sharedAction(self.safe_readTable)

class DbaseErrata(Dbase):
 filename = 'DbaseShelve/errataDB'

class DbaseComment(Dbase):
 filename = 'DbaseShelve/commentDB'

Example 14-15. PP2E\Internet\Cgi-Web\PyErrata\dbshelve.py (continued)

,ch14.17404 Page 862 Wednesday, February 7, 2001 2:54 PM

PyErrata Database Interfaces 863

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the top-level database calls remain unchanged. Moreover, changes and optimiza-
tions to top-level interfaces will likely impact this file alone.

Since this is a superclass common to storage-specific classes, we also here define
record key generation methods and insert common generated attributes (submit
date, initial report state) into new records before they are written.

Example 14-16. PP2E\Internet\Cgi-Web\PyErrata\dbcommon.py

##
an abstract superclass with shared dbase access logic;
stored records are assumed to be dictionaries (or other
mapping), one key per field; dbase medium is undefined;
subclasses: define writeItem and readTable as appropriate
for the underlying file medium--flat files, shelves, etc.
subtlety: the 'Submit date' field added here could be kept
as a tuple, and all sort/select logic will work; but since
these values may be embedded in a url string, we don't want
to convert from string to tuple using eval in index.cgi;
for consistency and safety, we convert to strings here;
if not for the url issue, tuples work fine as dict keys;
must use fixed-width columns in time string to sort;
this interface may be optimized in future releases;
##

import time, os

class Dbase:

 # store

 def makeKey(self):
 return "%s-%s" % (time.time(), os.getpid())

 def writeItem(self, newdata):
 assert 0, 'writeItem must be customized'

 def storeItem(self, newdata):
 secsSinceEpoch = time.time()
 timeTuple = time.localtime(secsSinceEpoch)
 y_m_d_h_m_s = timeTuple[:6]
 newdata['Submit date'] = '%s/%02d/%02d, %02d:%02d:%02d' % y_m_d_h_m_s
 newdata['Report state'] = 'Not yet verified'
 self.writeItem(newdata)

 # load

 def readTable(self):
 assert 0, 'readTable must be customized'

 def loadSortedTable(self, field=None): # returns a simple list
 reports = self.readTable() # ordered by field sort
 if field:

,ch14.17404 Page 863 Wednesday, February 7, 2001 2:54 PM

864 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Mutual Exclusion for Shelves

We’ve at last reached the bottom of the PyErrata code hierarchy: code that encap-
sulates file locks for synchronizing shelve access. The class listed in Example 14-17
provides tools to synchronize operations, using a lock on a file whose name is
provided by systems that use the class.

It includes methods for locking and unlocking the file, but also exports higher-
level methods for running function calls in exclusive or shared mode. Method
sharedAction is used to run read operations, and exclusiveAction handles
writes. Any number of shared actions can occur in parallel, but exclusive actions
occur all by themselves and block all other action requests in parallel processes.
Both kinds of actions are run in try-finally statements to guarantee that file
locks are unlocked on action exit, normal or otherwise.

 reports.sort(lambda x, y, f=field: cmp(x[f], y[f]))
 return reports

 def loadIndexedTable(self, field):
 reports = self.readTable()
 index = {}
 for report in reports:
 try:
 index[report[field]].append(report) # group by field values
 except KeyError:
 index[report[field]] = [report] # add first for this key
 keys = index.keys()
 keys.sort() # sorted keys, groups dict
 return keys, index

Example 14-17. PP2E\Internet\Cgi-Web\PyErrata\Mutex\mutexcntl.py

##
generally useful mixin, so a separate module;
requires self.filename attribute to be set, and
assumes self.filename+'.lck' file already exists;
set mutexcntl.debugMutexCntl to toggle logging;
writes lock log messages to self.filename+'.log';
##

import fcntl, os, time
from FCNTL import LOCK_SH, LOCK_EX, LOCK_UN

debugMutexCntl = 1
processType = {LOCK_SH: 'reader', LOCK_EX: 'writer'}

class MutexCntl:
 def lockFile(self, mode):
 self.logPrelock(mode)
 self.lock = open(self.filename + '.lck') # lock file in this process

Example 14-16. PP2E\Internet\Cgi-Web\PyErrata\dbcommon.py (continued)

,ch14.17404 Page 864 Wednesday, February 7, 2001 2:54 PM

PyErrata Database Interfaces 865

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This file lock management class is coded in its own module by design, because it
is potentially worth reusing. In PyErrata, shelve database classes mix it in with
multiple inheritance to implement mutual exclusion for database writers.

This class assumes that a lockable file exists as name self.filename (defined in
client classes) with a .lck extension; like all instance attributes, this name can vary
per client of the class. If a global variable is true, the class also optionally logs all
lock operations in a file of the same name as the lock, but with a .log extension.

 fcntl.flock(self.lock.fileno(), mode) # waits for lock if needed
 self.logPostlock()

 def lockFileRead(self): # allow > 1 reader: shared
 self.lockFile(LOCK_SH) # wait if any write lock

 def lockFileWrite(self): # writers get exclusive lock
 self.lockFile(LOCK_EX) # wait if any lock: r or w

 def unlockFile(self):
 self.logUnlock()
 fcntl.flock(self.lock.fileno(), LOCK_UN) # unlock for other processes

 def sharedAction(self, action, *args): # higher level interface
 self.lockFileRead() # block if a write lock
 try:
 result = apply(action, args) # any number shared at once
 finally: # but no exclusive actions
 self.unlockFile() # allow new writers to run
 return result

 def exclusiveAction(self, action, *args):
 self.lockFileWrite() # block if any other locks
 try:
 result = apply(action, args) # no other actions overlap
 finally:
 self.unlockFile() # allow new readers/writers
 return result

 def logmsg(self, text):
 if not debugMutexCntl: return
 log = open(self.filename + '.log', 'a') # append to the end
 log.write('%s\t%s\n' % (time.time(), text)) # output won't overwrite
 log.close() # but it may intermingle

 def logPrelock(self, mode):
 self.logmsg('Requested: %s, %s' % (os.getpid(), processType[mode]))
 def logPostlock(self):
 self.logmsg('Aquired: %s' % os.getpid())
 def logUnlock(self):
 self.logmsg('Released: %s' % os.getpid())

Example 14-17. PP2E\Internet\Cgi-Web\PyErrata\Mutex\mutexcntl.py (continued)

,ch14.17404 Page 865 Wednesday, February 7, 2001 2:54 PM

866 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice that the log file is opened in a append mode; on Unix systems, this mode
guarantees that the log file text written by each process appears on a line of its
own, not intermixed (multiple copies of this class may write to the log from paral-
lel CGI script processes). To really understand how this class works, though, we
need to say more about Python’s file-locking interface.

Using fcntl.flock to lock files

When we studied threads in Chapter 3, Parallel System Tools, we saw that the
Python thread module includes a mutual-exclusion lock mechanism that can be
used to synchronize threads’ access to shared global memory resources. This won’t
usually help us much in the CGI environment, however, because each database
request generally comes from a distinct process spawned by the HTTP server to
handle an incoming request. That is, thread locks work only within the same pro-
cess, because all threads run within a single process.

For CGI scripts, we usually need a locking mechanism that spans multiple pro-
cesses instead. On Unix systems, the Python standard library exports a tool based
on locking files, and therefore may be used across process boundaries. All of this
magic happens in these two lines in the PyErrata mutex class:

fcntl.flock(self.lock.fileno(), mode) # waits for lock if needed
fcntl.flock(self.lock.fileno(), LOCK_UN) # unlock for other processes

The fcntl.flock call in the standard Python library attempts to acquire a lock
associated with a file, and by default blocks the calling process if needed until the
lock can be acquired. The call accepts a file descriptor integer code (the stdio file
object’s fileno method returns one for us) and a mode flag defined in standard
module FCNTL, which takes one of three values in our system:

• LOCK_EX requests an exclusive lock, typically used for writers. This lock is
granted only if no other locks are held (exclusive or shared) and blocks all
other lock requests (exclusive or shared) until the lock is released. This guar-
antees that exclusive lock holders run alone.

• LOCK_SH requests a shared lock, typically used for readers. Any number of
processes can hold shared locks at the same time, but one is granted only if
no exclusive lock is held, and new exclusive lock requests are blocked until
all shared locks are released.

• LOCK_UN unlocks a lock previously acquired by the calling process so that
other processes can acquire locks and resume execution.

In database terms, the net effect is that readers wait only if a write lock is held by
another process, and writers wait if any lock is held—read or write. Though used
to synchronize processes, this scheme is more complex and powerful than the sim-
ple acquire/release model for locks in the Python thread module, and is different

,ch14.17404 Page 866 Wednesday, February 7, 2001 2:54 PM

PyErrata Database Interfaces 867

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

from the class tools available in the higher-level threading module. However, it
could be emulated by both these thread modules.

fcntl.flock internally calls out to whatever file-locking mechanism is available
in the underlying operating system,* and therefore you can consult the corre-
sponding Unix or Linux manpage for more details. It’s also possible to avoid
blocking if a lock can’t be acquired, and there are other synchronization tools in
the Python library (e.g., “fifos”), but we will ignore such options here.

Mutex test scripts

To help us understand the PyErrata synchronization model, let’s get a better feel
for the underlying file-locking primitives by running a few simple experiments.
Examples 14-18 and 14-19 implement simple reader and writer processes using the
flock call directly instead of our class. They request shared and exclusive locks,
respectively.

In this simple test, locks on text file test.lck are used to synchronize read and write
access to a text file appended by writers. The appended text file plays the role of
PyErrata shelve databases, and the reader and writer scripts in Examples 14-18 and
14-19 stand in for its browse and submit script processes.

* Locking mechanisms vary per platform and may not exist at all. For instance, the flock call is not cur-
rently supported on Windows as of Python 1.5.2, so you may need to replace this call with a platform-
specific alternative on some server machines.

Example 14-18. PP2E\Internet\Cgi-Web\PyErrata\Mutex\testread.py

#!/usr/bin/python

import os, fcntl, time
from FCNTL import LOCK_SH, LOCK_UN
print os.getpid(), 'start reader', time.time()

file = open('test.lck', 'r') # open the lock file for fd
fcntl.flock(file.fileno(), LOCK_SH) # block if a writer has lock
print os.getpid(), 'got read lock', time.time() # any number of readers can run

time.sleep(3)
print 'lines so far:', os.popen('wc -l Shared.txt').read(),

print os.getpid(), 'unlocking\n'
fcntl.flock(file.fileno(), LOCK_UN) # resume blocked writers now

Example 14-19. PP2E\Internet\Cgi-Web\PyErrata\Mutex\testwrite.py

#!/usr/bin/python

import os, fcntl, time
from FCNTL import LOCK_EX, LOCK_UN

,ch14.17404 Page 867 Wednesday, February 7, 2001 2:54 PM

868 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To start a set of readers and writers running in parallel, Example 14-20 uses the
Unix fork/execl call combination to launch program processes (both calls are
described in Chapter 3).

print os.getpid(), 'start writer', time.time()

file = open('test.lck', 'r') # open the lock file
fcntl.flock(file.fileno(), LOCK_EX) # block if any read or write
print os.getpid(), 'got write lock', time.time() # only 1 writer at a time

log = open('Shared.txt', 'a')
time.sleep(3)
log.write('%d Hello\n' % os.getpid())

print os.getpid(), 'unlocking\n'
fcntl.flock(file.fileno(), LOCK_UN) # resume blocked read or write

Example 14-20. PP2E\Internet\Cgi-Web\PyErrata\Mutex\launch-test.py

#!/usr/bin/python
##
launch test program processes
run with ./launch-test.py > launch-test.out
try spawning reader before writer, then writer
before reader--second process blocks till first
unlocks in both cases; if launches 2 readers
initially, both get lock and block writer; if
launch 2 writers first then 2 readers, 2nd writer
waits for first, both readers wait for both
writers, and both readers get lock at same time;
in test below, the first writer runs, then all
readers run before any writer; if readers are
first, all run before any writer; (all on linux)
##

import os

for i in range(1):
 if os.fork() == 0:
 os.execl("./testwrite.py")

for i in range(2): # copy this process
 if os.fork() == 0: # if in new child process
 os.execl("./testread.py") # overlay with test program

for i in range(2):
 if os.fork() == 0:
 os.execl("./testwrite.py") # same, but start writers

for i in range(2):
 if os.fork() == 0:
 os.execl("./testread.py")

Example 14-19. PP2E\Internet\Cgi-Web\PyErrata\Mutex\testwrite.py (continued)

,ch14.17404 Page 868 Wednesday, February 7, 2001 2:54 PM

PyErrata Database Interfaces 869

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Comments in this script give the results for running its logic various ways on Linux.
Pragmatic note: after copying these files over from Windows in an FTP’d tar file, I
first had to give them executable permissions and convert them from DOS to Unix
line-feed format before Linux would treat them as executable programs:*

[mark@toy .../PyErrata/Mutex]$ chmod +x *.py
[mark@toy .../PyErrata/Mutex]$ python $X/PyTools/fixeoln_all.py tounix "*.py"
__init__.py
launch-mutex-simple.py
launch-mutex.py
launch-test.py
mutexcntl.py
testread-mutex.py
testread.py
testwrite-mutex.py
testwrite.py

Once they’ve been so configured as executables, we can run all three of these
scripts from the Linux command line. The reader and writer scripts access a
Shared.txt file, which is meant to simulate a shared resource in a real parallel
application (e.g., a database in the CGI realm):

[mark@toy ...PyErrata/Mutex]$./testwrite.py
1010 start writer 960919842.773
1010 got write lock 960919842.78
1010 unlocking

[mark@toy ...PyErrata/Mutex]$./testread.py
1013 start reader 960919900.146
1013 got read lock 960919900.153
lines so far: 132 Shared.txt
1013 unlocking

The launch-test script simply starts a batch of the reader and writer scripts that
run as parallel processes to simulate a concurrent environment (e.g., web brows-
ers contacting a CGI script all at once):

[mark@toy ...PyErrata/Mutex]$ python launch-test.py
1016 start writer 960919933.206
1016 got write lock 960919933.213
1017 start reader 960919933.416
1018 start reader 960919933.455

for i in range(1):
 if os.fork() == 0:
 os.execl("./testwrite.py")

* The +x syntax in the chmod shell command here means “set the executable bit” in the file’s permission
bit-string for “self”, the current user. At least on my machine, chmod accepts both the integer bit-strings
used earlier and symbolic forms like this. Note that we run these tests on Linux because the Python os.
fork call doesn’t work on Windows, at least as of Python 1.5.2. It may eventually, but for now Windows
scripts use os.spawnv instead (see Chapter 3 for details).

Example 14-20. PP2E\Internet\Cgi-Web\PyErrata\Mutex\launch-test.py (continued)

,ch14.17404 Page 869 Wednesday, February 7, 2001 2:54 PM

870 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

1022 start reader 960919933.474
1021 start reader 960919933.486
1020 start writer 960919933.497
1019 start writer 960919933.508
1023 start writer 960919933.52
1016 unlocking

1017 got read lock 960919936.228
1018 got read lock 960919936.234
1021 got read lock 960919936.24
1022 got read lock 960919936.246
lines so far: 133 Shared.txt
1022 unlocking

lines so far: 133 Shared.txt
1018 unlocking

lines so far: 133 Shared.txt
1017 unlocking

lines so far: 133 Shared.txt
1021 unlocking

1019 got write lock 960919939.375
1019 unlocking

1020 got write lock 960919942.379
1020 unlocking

1023 got write lock 960919945.388
1023 unlocking

This output is a bit cryptic; most lines list process ID, text, and system time, and
each process inserts a three-second delay (via time.sleep) to simulate real activi-
ties. If you look carefully, you’ll notice that all processes start at roughly the same
time, but access to the shared file is synchronized into this sequence:

1. One writer grabs the file first.

2. Next, all readers get it at the same time, three seconds later.

3. Finally, all other writers get the file one after another, three seconds apart.

The net result is that writer processes always access the file alone while all others
are blocked. Such a sequence will avoid concurrent update problems.

Mutex class test scripts

To test our mutex class outside the scope of PyErrata, we simply rewrite these
scripts to hook into the class’s interface. The output of Examples 14-21 and 14-22
is similar to the raw fcntl versions shown previously, but an additional log file is
produced to help trace lock operations.

,ch14.17404 Page 870 Wednesday, February 7, 2001 2:54 PM

PyErrata Database Interfaces 871

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Unlike PyErrata, we don’t need to change sys.path to allow FCNTL imports in
the mutexcntl module in Examples 14-21 and 14-22, because we’ll run these
scripts as ourself, not the CGI user “nobody” (my path includes the directory
where FCNTL lives).

The launcher is the same as Example 14-20, but Example 14-23 starts multiple cop-
ies of the class-based readers and writers. Run Example 14-23 on your server with
various process counts to follow the locking mechanism.

Example 14-21. PP2E\Internet\Cgi-Web\PyErrata\Mutex\testread-mutex.py

#!/usr/bin/python
import os, time
from mutexcntl import MutexCntl

class app(MutexCntl):
 def go(self):
 self.filename = 'test'
 print os.getpid(), 'start mutex reader'
 self.sharedAction(self.report) # can report with others
 # but not during update
 def report(self):
 print os.getpid(), 'got read lock'
 time.sleep(3)
 print 'lines so far:', os.popen('wc -l Shared.txt').read(),
 print os.getpid(), 'unlocking\n'

if __name__ == '__main__': app().go()

Example 14-22. PP2E\Internet\Cgi-Web\PyErrata\Mutex\testwrite-mutex.py

#!/usr/bin/python
import os, time
from mutexcntl import MutexCntl

class app(MutexCntl):
 def go(self):
 self.filename = 'test'
 print os.getpid(), 'start mutex writer'
 self.exclusiveAction(self.update) # must do this alone;
 # no update or report
 def update(self): # can run at same time
 print os.getpid(), 'got write lock'
 log = open('Shared.txt', 'a')
 time.sleep(3)
 log.write('%d Hello\n' % os.getpid())
 print os.getpid(), 'unlocking\n'

if __name__ == '__main__': app().go()

,ch14.17404 Page 871 Wednesday, February 7, 2001 2:54 PM

872 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The output of the class-based test is more or less the same. Processes start up in a
different order, but the synchronization behavior is identical—one writer writes, all
readers read, then remaining writers write one at a time:

[mark@toy .../PyErrata/Mutex]$ python launch-mutex.py
1035 start mutex writer
1035 got write lock
1037 start mutex reader
1040 start mutex reader
1038 start mutex writer
1041 start mutex reader
1039 start mutex writer
1036 start mutex reader
1042 start mutex writer
1035 unlocking

1037 got read lock
1041 got read lock
1040 got read lock
1036 got read lock
lines so far: 137 Shared.txt
1036 unlocking

lines so far: 137 Shared.txt
1041 unlocking

Example 14-23. PP2E\Internet\Cgi-Web\PyErrata\launch-mutex.py

#!/usr/bin/python
launch test program processes
same, but start mutexcntl clients

import os

for i in range(1):
 if os.fork() == 0:
 os.execl("./testwrite-mutex.py")

for i in range(2):
 if os.fork() == 0:
 os.execl("./testread-mutex.py")

for i in range(2):
 if os.fork() == 0:
 os.execl("./testwrite-mutex.py")

for i in range(2):
 if os.fork() == 0:
 os.execl("./testread-mutex.py")

for i in range(1):
 if os.fork() == 0:
 os.execl("./testwrite-mutex.py")

,ch14.17404 Page 872 Wednesday, February 7, 2001 2:54 PM

PyErrata Database Interfaces 873

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

lines so far: 137 Shared.txt
1040 unlocking

lines so far: 137 Shared.txt
1037 unlocking

1038 got write lock
1038 unlocking

1039 got write lock
1039 unlocking

1042 got write lock
1042 unlocking

All times have been removed from launcher output this time, because our mutex
class automatically logs lock operations in a separate file, with times and process
IDs; the three-second sleep per process is more obvious in this format:

[mark@toy .../PyErrata/Mutex]$ cat test.log
960920109.518 Requested: 1035, writer
960920109.518 Aquired: 1035
960920109.626 Requested: 1040, reader
960920109.646 Requested: 1038, writer
960920109.647 Requested: 1037, reader
960920109.661 Requested: 1041, reader
960920109.674 Requested: 1039, writer
960920109.69 Requested: 1036, reader
960920109.701 Requested: 1042, writer
960920112.535 Released: 1035
960920112.542 Aquired: 1037
960920112.55 Aquired: 1041
960920112.557 Aquired: 1040
960920112.564 Aquired: 1036
960920115.601 Released: 1036
960920115.63 Released: 1041
960920115.657 Released: 1040
960920115.681 Released: 1037
960920115.681 Aquired: 1038
960920118.689 Released: 1038
960920118.696 Aquired: 1039
960920121.709 Released: 1039
960920121.716 Aquired: 1042
960920124.728 Released: 1042

Finally, this is what the shared text file looks like after all these processes have
exited stage left. Each writer simply added a line with its process ID; it’s not the
most amazing of parallel process results, but if you pretend that this is our PyErrata
shelve-based database, these tests seem much more meaningful:

[mark@toy .../PyErrata/Mutex]$ cat Shared.txt
1010 Hello
1016 Hello
1019 Hello

,ch14.17404 Page 873 Wednesday, February 7, 2001 2:54 PM

874 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

1020 Hello
1023 Hello
1035 Hello
1038 Hello
1039 Hello
1042 Hello

Administrative Tools
Now that we have finished implementing a Python-powered, web-enabled, con-
currently accessible report database, and published web pages and scripts that
make that database accessible to the cyberworld at large, we can sit back and wait
for reports to come in. Or almost; there still is no way for the site owner to view
or delete records offline. Moreover, all records are tagged as “not yet verified” on
submission, and must somehow be verified or rejected.

This section lists a handful of tersely documented PyErrata scripts that accomplish
such tasks. All are Python programs shipped in the top-level AdminTools direc-
tory and are assumed to be run from a shell command line on the server (or other
machine, after database downloads). They implement simple database content
dumps, database backups, and database state-changes and deletions for use by the
errata site administrator.

These tasks are infrequent, so not much work has gone into these tools. Frankly,
some fall into the domain of “quick and dirty” hackerage and aren’t as robust as
they could be. For instance, because these scripts bypass the database interface
classes and speak directly to the underlying file structures, changes in the underly-
ing file mechanisms will likely break these tools. Also in a more polished future
release, these tools might instead sprout GUI- or web-based user interfaces to sup-
port over-the-net administration. For now, such extensions are left as exercises for
the ambitious reader.

Backup Tools

System backup tools simply spawn the standard Unix tar and gzip command-
line programs to copy databases into single compressed files. You could write a
shell script for this task too, but Python works just as well, as shown in Examples
14-24 and 14-25.

Example 14-24. PP2E\Internet\Cgi-Web\PyErrata\AdminTools\backupFiles.py

#!/usr/bin/python
import os
os.system('tar -cvf DbaseFiles.tar ../DbaseFiles')
os.system('gzip DbaseFiles.tar')

,ch14.17404 Page 874 Wednesday, February 7, 2001 2:54 PM

Administrative Tools 875

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Display Tools

The scripts in Examples 14-26 and 14-27 produce raw dumps of each database
structure’s contents. Because the databases use pure Python storage mechanisms
(pickles, shelves), these scripts can work one level below the published database
interface classes; whether they should depends on how much code you’re pre-
pared to change when your database model evolves. Apart from printing gener-
ated record filenames and shelve keys, there is no reason that these scripts
couldn’t be made less brittle by instead calling the database classes’
loadSortedTable methods. Suggested exercise: do better.

Running these scripts produces the following sorts of results (truncated at 80 char-
acters to fit in this book). It’s not nearly as pretty as the web pages generated for
the user in PyErrata, but could be piped to other command-line scripts for further

Example 14-25. PP2E\Internet\Cgi-Web\PyErrata\AdminTools\backupShelve.py

#!/usr/bin/python
import os
os.system('tar -cvf DbaseShelve.tar ../DbaseShelve')
os.system('gzip DbaseShelve.tar')

Example 14-26. PP2E\Internet\Cgi-Web\PyErrata\AdminTools\dumpFiles.py

#!/usr/bin/python
import glob, pickle

def dump(kind):
 print '\n', kind, '='*60, '\n'
 for file in glob.glob("../DbaseFiles/%s/*.data" % kind):
 print '\n', '-'*60
 print file
 print pickle.load(open(file, 'r'))

dump('errataDB')
dump('commentDB')

Example 14-27. PP2E\Internet\Cgi-Web\PyErrata\AdminTools\dumpShelve.py

#!/usr/bin/python
import shelve
e = shelve.open('../DbaseShelve/errataDB')
c = shelve.open('../DbaseShelve/commentDB')

print '\n', 'Errata', '='*60, '\n'
print e.keys()
for k in e.keys(): print '\n', k, '-'*60, '\n', e[k]

print '\n', 'Comments', '='*60, '\n'
print c.keys()
for k in c.keys(): print '\n', k, '-'*60, '\n', c[k]

,ch14.17404 Page 875 Wednesday, February 7, 2001 2:54 PM

876 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

offline analysis and processing. For instance, the dump scripts’ output could be
sent to a report-generation script that knows nothing of the Web:

[mark@toy .../Internet/Cgi-Web/PyErrata/AdminTools]$ python dumpFiles.py

errataDB ==

--
../DbaseFiles/errataDB/937907956.159-5157.data
{'Page number': '42', 'Type': 'Typo', 'Severity': 'Low', 'Chapter number': '3'...

--
...more...

commentDB ==

--
../DbaseFiles/commentDB/937908410.203-5352.data
{'Submit date': '1999/09/21, 06:06:50', 'Submitter email': 'bob@bob.com',...

--
...more...

[mark@toy .../Internet/Cgi-Web/PyErrata/AdminTools]$ python dumpShelve.py

Errata ==

['938245136.363-20046', '938244808.434-19964']

938245136.363-20046 --
{'Page number': '256', 'Type': 'Program bug', 'Severity': 'High', 'Chapter nu...

938244808.434-19964 --
{'Page number': 'various', 'Type': 'Suggestion', 'Printing Date': '', 'Chapte...

Comments ==

['938245187.696-20054']

938245187.696-20054 --
{'Submit date': '1999/09/25, 03:39:47', 'Submitter email': 'bob@bob.com', 'Re...

Report State-Change Tools

Our last batch of command-line tools allows the site owner to mark reports as ver-
ified or rejected and to delete reports altogether. The idea is that someone will
occasionally run these scripts offline, as time allows, to change states after investi-
gating reports. And this is the end to our quest for errata automation: the investiga-
tion process itself is assumed to require both time and brains.

,ch14.17404 Page 876 Wednesday, February 7, 2001 2:54 PM

Administrative Tools 877

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

There are no interfaces in the database’s classes for changing existing reports, so
these scripts can at least make a case for going below the classes to the physical
storage mediums. On the other hand, the classes could be extended to support
such update operations too, with interfaces that could also be used by future state-
change tools (e.g., web interfaces).

To minimize some redundancy, let’s first define state-change functions in a com-
mon module listed in Example 14-28, so they may be shared by both the file and
shelve scripts.

To process state changes on the file-based database, we simply iterate over all the
pickle files in the database directories, as shown in Example 14-29.

Example 14-28. PP2E\Internet\Cgi-Web\PyErrata\AdminTools\verifycommon.py

###
put common verify code in a shared module for consistency and
reuse; could also generalize dbase update scan, but this helps
###

def markAsVerify(report):
 report['Report state'] = 'Verified by author'

def markAsReject(report):
 reason = '' # input reject reason text
 while 1: # prepend to original desc
 try:
 line = raw_input('reason>')
 except EOFError:
 break
 reason = reason + line + '\n'
 report['Report state'] = 'Rejected - not a real bug'
 report['Description'] = ('Reject reason: ' + reason +
 '\n[Original description=>]\n' + report['Description'])

Example 14-29. PP2E\Internet\Cgi-Web\PyErrata\AdminTools\verifyFiles.py

#!/usr/bin/python
##
report state change and deletion operations;
also need a tool for anonymously publishing reports
sent by email that are of general interest--for now,
they can be entered with the submit forms manually;
this is text-based: the idea is that records can be
browsed in the errata page first (sort by state to
see unverified ones), but an edit gui or web-based
verification interface might be very useful to add;
##

import glob, pickle, os
from verifycommon import markAsVerify, markAsReject

,ch14.17404 Page 877 Wednesday, February 7, 2001 2:54 PM

878 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When run from the command line, the script displays one report’s contents at a
time and pauses after each to ask if it should be verified, rejected, or deleted. Here
is the beginning of one file database verify session, shown with line wrapping so
you can see what I see (it’s choppy but compact):

[mark@toy .../Internet/Cgi-Web/PyErrata/AdminTools]$ python verifyFiles.py
Errata...
{'Page number': '12', 'Type': 'Program bug', 'Printing Date': '', 'Chapter numbe
r': '', 'Submit date': '1999/09/21, 06:17:13', 'Report state': 'Not yet verified
', 'Submitter name': 'Lisa Lutz', 'Submitter email': '', 'Description': '1 + 1 =
 2, not 3...\015\012', 'Submit mode': '', 'Part number': '', 'Severity
': 'High'}
Verify?n
Reject?n
Delete?n
{'Page number': '', 'Type': 'Program bug', 'Printing Date': '', 'Chapter number'
: '16', 'Submit date': '1999/09/21, 06:20:22', 'Report state': 'Not yet verified
', 'Submitter name': 'jerry', 'Submitter email': 'http://www.jerry.com', 'Descri
ption': 'Help! I just spilled coffee all over my\015\012computer...\015\012
 ', 'Submit mode': '', 'Part number': '', 'Severity': 'Unknown'}
Verify?n
Reject?y
reason>It's not Python's fault
reason>(ctrl-d)
...more...

Verifications and rejections change records, but deletions actually remove them
from the system. In verifycommon, a report rejection prompts for an explanation
and concatenates it to the original description. Deletions delete the associated file
with os.remove; this feature may come in handy if the system is ever abused by a
frivolous user (including me, while writing examples for this book). The shelve-
based version of the verify script looks and feels similar, but deals in shelves
instead of flat files, as shown in Example 14-30.

def analyse(kind):
 for file in glob.glob("../DbaseFiles/%s/*.data" % kind):
 data = pickle.load(open(file, 'r'))
 if data['Report state'] == 'Not yet verified':
 print data
 if raw_input('Verify?') == 'y':
 markAsVerify(data)
 pickle.dump(data, open(file, 'w'))
 elif raw_input('Reject?') == 'y':
 markAsReject(data)
 pickle.dump(data, open(file, 'w'))
 elif raw_input('Delete?') == 'y':
 os.remove(file) # same as os.unlink

print 'Errata...'; analyse('errataDB')
print 'Comments...'; analyse('commentDB')

Example 14-29. PP2E\Internet\Cgi-Web\PyErrata\AdminTools\verifyFiles.py (continued)

,ch14.17404 Page 878 Wednesday, February 7, 2001 2:54 PM

Designing for Reuse and Growth 879

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Note that the verifycommon module helps ensure that records are marked consis-
tently and avoids some redundancy. However, the file and shelve verify scripts still
look very similar; it might be better to further generalize the notion of database
update scans by moving this logic into the storage-specific database interface
classes shown earlier.

Short of doing so, there is not much we can do about the scan-logic redundancy
or storage-structure dependencies of the file and shelve verify scripts. The existing
load-list database class methods won’t help, because they don’t provide the gener-
ated filename and shelve key details we need to rewrite records here. To make the
administrative tools more robust, some database class redesign would probably be
in order—which seems as good a segue to the next section as any.

Designing for Reuse and Growth
I admit it: PyErrata may be thrifty, but it’s also a bit self-centered. The database
interfaces presented in the prior sections work as planned and serve to separate all
database processing from CGI scripting details. But as shown in this book, these
interfaces aren’t as generally reusable as they could be; moreover, they are not yet
designed to scale up to larger database applications.

Example 14-30. PP2E\Internet\Cgi-Web\PyErrata\AdminTools\verifyShelve.py

#!/usr/bin/python
##
like verifyFiles.py, but do it to shelves;
caveats: we should really obtain a lock before shelve
updates here, and there is some scan logic redundancy
##

import shelve
from verifycommon import markAsVerify, markAsReject

def analyse(dbase):
 for k in dbase.keys():
 data = dbase[k]
 if data['Report state'] == 'Not yet verified':
 print data
 if raw_input('Verify?') == 'y':
 markAsVerify(data)
 dbase[k] = data
 elif raw_input('Reject?') == 'y':
 markAsReject(data)
 dbase[k] = data
 elif raw_input('Delete?') == 'y':
 del dbase[k]

print 'Errata...'; analyse(shelve.open('../DbaseShelve/errataDB'))
print 'Comments...'; analyse(shelve.open('../DbaseShelve/commentDB'))

,ch14.17404 Page 879 Wednesday, February 7, 2001 2:54 PM

880 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Let’s wrap up this chapter by donning our software code review hats for just a few
moments and exploring some design alternatives for PyErrata. In this section, I
highlight the PyErrata database interface’s obstacles to general applicability, not as
self-deprecation, but to show how programming decisions can impact reusability.

Something else is going on in this section too. There is more concept than code
here, and the code that is here is more like an experimental design than a final
product. On the other hand, because that design is coded in Python, it can be run
to test the feasibility of design alternatives; as we’ve seen, Python can be used as a
form of executable pseudocode.

Reusability

As we saw, code reuse is pervasive within PyErrata: top-level calls filter down to
common browse and submit modules, which in turn call database classes that
reuse a common module. But what about sharing PyErrata code with other sys-
tems? Although not designed with generality in mind, PyErrata’s database interface
modules could almost be reused to implement other kinds of file- and shelve-
based databases outside the context of PyErrata itself. However, we need a few
more tweaks to turn these interfaces into widely useful tools.

As is, shelve and file-directory names are hardcoded into the storage-specific sub-
class modules, but another system could import and reuse their Dbase classes and
provide different directory names. Less generally, though, the dbcommon module
adds two attributes to all new records (submit-time and report-state) that may or
may not be relevant outside PyErrata. It also assumes that stored values are map-
pings (dictionaries), but that is less PyErrata-specific.

If we were to rewrite these classes for more general use, it would make sense to
first repackage the four DbaseErrata and DbaseComment classes in modules of
their own (they are very specific instances of file and shelve databases). We would
probably also want to somehow relocate dbcommon’s insertion of submit-time and
report-state attributes from the dbcommon module to these four classes themselves
(these attributes are specific to PyErrata databases). For instance, we might define
a new DbasePyErrata class that sets these attributes and is a mixed-in superclass
to the four PyErrata storage-specific database classes:

in new module
class DbasePyErrata:
 def storeItem(self, newdata):
 secsSinceEpoch = time.time()
 timeTuple = time.localtime(secsSinceEpoch)
 y_m_d_h_m_s = timeTuple[:6]
 newdata['Submit date'] = '%s/%02d/%02d, %02d:%02d:%02d' % y_m_d_h_m_s
 newdata['Report state'] = 'Not yet verified'
 self.writeItem(newdata)

,ch14.17404 Page 880 Wednesday, February 7, 2001 2:54 PM

Designing for Reuse and Growth 881

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

in dbshelve
class Dbase(MutexCntl, dbcommon.Dbase):
 # as is

in dbfiles
class Dbase(dbcommon.Dbase):
 # as is

in new file module
class DbaseErrata(DbasePyErrata, dbfiles.Dbase):
 dirname = 'DbaseFiles/errataDB/'
class DbaseComment(DbasePyErrata, dbfiles.Dbase):
 dirname = 'DbaseFiles/commentDB/'

in new shelve module
class DbaseErrata(DbasePyErrata, dbshelve.Dbase):
 filename = 'DbaseShelve/errataDB'
class DbaseComment(DbasePyErrata, dbshelve.Dbase):
 filename = 'DbaseShelve/commentDB'

There are more ways to structure this than we have space to cover here. The point
is that by factoring out application-specific code, dbshelve and dbfiles mod-
ules not only serve to keep PyErrata interface and database code distinct, but also
become generally useful data-storage tools.

Scalability

PyErrata’s database interfaces were designed for this specific application’s storage
requirements alone and don’t directly support very large databases. If you study
the database code carefully, you’ll notice that submit operations update a single
item, but browse requests load entire report databases all at once into memory.
This scheme works fine for the database sizes expected in PyErrata, but performs
badly for larger data sets. We could extend the database classes to handle larger
data sets too, but they would likely require new top-level interfaces altogether.

Before I stopped updating it, the static HTML file used to list errata from the first
edition of this book held just some 60 reports, and I expect a similarly small data
set for other books and editions. With such small databases, it’s reasonable to load
an entire database into memory (i.e., into Python lists and dictionaries) all at once,
and frequently. Indeed, the time needed to transfer a web page containing 60
records across the Internet likely outweighs the time it takes to load 60 report files
or shelve keys on the server.

On the other hand, the database may become too slow if many more reports than
expected are posted. There isn’t much we could do to optimize the “Simple list”
and “With index” display options, since they really do display all records. But for
the “Index only” option, we might be able to change our classes to load only
records having a selected value in the designated report field.

,ch14.17404 Page 881 Wednesday, February 7, 2001 2:54 PM

882 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

For instance, we could work around database load bottlenecks by changing our
classes to implement delayed loading of records: rather than returning the real
database, load requests could return objects that look the same but fetch actual
records only when needed. Such an approach might require no changes in the rest
of the system’s code, but may be complex to implement.

Multiple shelve field indexing

Perhaps a better approach would be to define an entirely new top-level interface
for the “Index only” option—one that really does load only records matching a
field value query. For instance, rather than storing all records in a single shelve,
we could implement the database as a set of index shelves, one per record field, to
associate records by field values. Index shelve keys would be values of the associ-
ated field; shelve values would be lists of records having that field value. The
shelve entry lists might contain either redundant copies of records, or unique
names of flat files holding the pickled record dictionaries, external to the index
shelves (as in the current flat-file model).

For example, the PyErrata comment database could be structured as a directory of
flat files to hold pickled report dictionaries, together with five shelves to index the
values in all record fields (submitter-name, submitter-email, submit-mode, submit-
date, report-state). In the report-state shelve, there would be one entry for each
possible report state (verified, rejected, etc.); each entry would contain a list of
records with just that report-state value. Field value queries would be fast, but
store and load operations would become more complex:

• To store a record in such a scheme, we would first pickle it to a uniquely
named flat file, then insert that file’s name into lists in all five shelves, using
each field’s value as shelve key.

• To load just the records matching a field/value combination, we would first
index that field’s shelve on the value to fetch a filename list, and step through
that list to load matching records only, from flat pickle files.

Let’s take the leap from hypothetical to concrete, and prototype these ideas in
Python. If you’re following closely, you’ll notice that what we’re really talking
about here is an extension to the flat-file database structure, one that merely adds
index shelves. Hence, one possible way to implement the model is as a subclass
of the current flat-file classes. Example 14-31 does just that, as proof of the design
concept.

Example 14-31. PP2E\Internet\PyErrata\AdminTools\dbaseindexed.py

##
add field index shelves to flat-file database mechanism;
to optimize "index only" displays, use classes at end of this file;
change browse, index, submit to use new loaders for "Index only" mode;

,ch14.17404 Page 882 Wednesday, February 7, 2001 2:54 PM

Designing for Reuse and Growth 883

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

minor nit: uses single lock file for all index shelve read/write ops;
storing record copies instead of filenames in index shelves would be
slightly faster (avoids opening flat files), but would take more space;
falls back on original brute-force load logic for fields not indexed;
shelve.open creates empty file if doesn't yet exist, so never fails;
to start, create DbaseFilesIndex/{commentDB,errataDB}/indexes.lck;
##

import sys; sys.path.insert(0, '..') # check admin parent dir first
from Mutex import mutexcntl # fcntl path okay: not 'nobody'
import dbfiles, shelve, pickle, string, sys

class Dbase(mutexcntl.MutexCntl, dbfiles.Dbase):
 def makeKey(self):
 return self.cachedKey
 def cacheKey(self): # save filename
 self.cachedKey = dbfiles.Dbase.makeKey(self) # need it here too
 return self.cachedKey

 def indexName(self, fieldname):
 return self.dirname + string.replace(fieldname, ' ', '-')

 def safeWriteIndex(self, fieldname, newdata, recfilename):
 index = shelve.open(self.indexName(fieldname))
 try:
 keyval = newdata[fieldname] # recs have all fields
 reclist = index[keyval] # fetch, mod, rewrite
 reclist.append(recfilename) # add to current list
 index[keyval] = reclist
 except KeyError:
 index[keyval] = [recfilename] # add to new list

 def safeLoadKeysList(self, fieldname):
 if fieldname in self.indexfields:
 keys = shelve.open(self.indexName(fieldname)).keys()
 keys.sort()
 else:
 keys, index = self.loadIndexedTable(fieldname)
 return keys

 def safeLoadByKey(self, fieldname, fieldvalue):
 if fieldname in self.indexfields:
 dbase = shelve.open(self.indexName(fieldname))
 try:
 index = dbase[fieldvalue]
 reports = []
 for filename in index:
 pathname = self.dirname + filename + '.data'
 reports.append(pickle.load(open(pathname, 'r')))
 return reports
 except KeyError:
 return []
 else:

Example 14-31. PP2E\Internet\PyErrata\AdminTools\dbaseindexed.py (continued)

,ch14.17404 Page 883 Wednesday, February 7, 2001 2:54 PM

884 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 key, index = self.loadIndexedTable(fieldname)
 try:
 return index[fieldvalue]
 except KeyError:
 return []

 # top-level interfaces (plus dbcommon and dbfiles)

 def writeItem(self, newdata):
 # extend to update indexes
 filename = self.cacheKey()
 dbfiles.Dbase.writeItem(self, newdata)
 for fieldname in self.indexfields:
 self.exclusiveAction(self.safeWriteIndex,
 fieldname, newdata, filename)

 def loadKeysList(self, fieldname):
 # load field's keys list only
 return self.sharedAction(self.safeLoadKeysList, fieldname)

 def loadByKey(self, fieldname, fieldvalue):
 # load matching recs lisy only
 return self.sharedAction(self.safeLoadByKey, fieldname, fieldvalue)

class DbaseErrata(Dbase):
 dirname = 'DbaseFilesIndexed/errataDB/'
 filename = dirname + 'indexes'
 indexfields = ['Submitter name', 'Submit date', 'Report state']

class DbaseComment(Dbase):
 dirname = 'DbaseFilesIndexed/commentDB/'
 filename = dirname + 'indexes'
 indexfields = ['Submitter name', 'Report state'] # index just these

#
self-test
#

if __name__ == '__main__':
 import os
 dbase = DbaseComment()
 os.system('rm %s*' % dbase.dirname) # empty dbase dir
 os.system('echo > %s.lck' % dbase.filename) # init lock file

 # 3 recs; normally have submitter-email and description, not page
 # submit-date and report-state are added auto by rec store method
 records = [{'Submitter name': 'Bob', 'Page': 38, 'Submit mode': ''},
 {'Submitter name': 'Brian', 'Page': 40, 'Submit mode': ''},
 {'Submitter name': 'Bob', 'Page': 42, 'Submit mode': 'email'}]
 for rec in records: dbase.storeItem(rec)

 dashes = '-'*80
 def one(item):

Example 14-31. PP2E\Internet\PyErrata\AdminTools\dbaseindexed.py (continued)

,ch14.17404 Page 884 Wednesday, February 7, 2001 2:54 PM

Designing for Reuse and Growth 885

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This module’s code is something of an executable prototype, but that’s much of
the point here. The fact that we can actually run experiments coded in Python
helps pinpoint problems in a model early on.

For instance, I had to redefine the makeKey method here to cache filenames
locally (they are needed for index shelves too). That’s not quite right, and if I were
to adopt this database interface, I would probably change the file class to return
generated filenames, not discard them. Such misfits can often be uncovered only
by writing real code—a task that Python optimizes by design.

If this module is run as a top-level script, its self-test code at the bottom of the file
executes with the following output. I don’t have space to explain it in detail, but
try to match it up with the module’s self-test code to trace how queries are satis-
fied with and without field indexes:

[mark@toy .../Internet/Cgi-Web/PyErrata/AdminTools]$ python dbaseindexed.py
--
old stuff
--
{'Submit date': '2000/06/13, 11:45:01', 'Page': 38, 'Submit mode': '', 'Report s
tate': 'Not yet verified', 'Submitter name': 'Bob'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 42, 'Submit mode': 'email', 'Rep
ort state': 'Not yet verified', 'Submitter name': 'Bob'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 40, 'Submit mode': '', 'Report s
tate': 'Not yet verified', 'Submitter name': 'Brian'}
--

 print dashes; print item
 def all(list):
 print dashes
 for x in list: print x

 one('old stuff')
 all(dbase.loadSortedTable('Submitter name')) # load flat list
 all(dbase.loadIndexedTable('Submitter name')) # load, grouped
 #one(dbase.loadIndexedTable('Submitter name')[0])
 #all(dbase.loadIndexedTable('Submitter name')[1]['Bob'])
 #all(dbase.loadIndexedTable('Submitter name')[1]['Brian'])

 one('new stuff')
 one(dbase.loadKeysList('Submitter name')) # bob, brian
 all(dbase.loadByKey('Submitter name', 'Bob')) # two recs match
 all(dbase.loadByKey('Submitter name', 'Brian')) # one rec mathces
 one(dbase.loadKeysList('Report state')) # all match
 all(dbase.loadByKey('Report state', 'Not yet verified'))

 one('boundary cases')
 all(dbase.loadByKey('Submit mode', '')) # not indexed: load
 one(dbase.loadByKey('Report state', 'Nonesuch')) # unknown value: []
 try: dbase.loadByKey('Nonesuch', 'Nonesuch') # bad fields: exc
 except: print 'Nonesuch failed'

Example 14-31. PP2E\Internet\PyErrata\AdminTools\dbaseindexed.py (continued)

,ch14.17404 Page 885 Wednesday, February 7, 2001 2:54 PM

886 Chapter 14: Larger Web Site Examples II

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

['Bob', 'Brian']
{'Bob': [{'Submit date': '2000/06/13, 11:45:01', 'Page': 38, 'Submit mode': '',
'Report state': 'Not yet verified', 'Submitter name': 'Bob'}, {'Submit date': '2
000/06/13, 11:45:01', 'Page': 42, 'Submit mode': 'email', 'Report state': 'Not y
et verified', 'Submitter name': 'Bob'}], 'Brian': [{'Submit date': '2000/06/13,
11:45:01', 'Page': 40, 'Submit mode': '', 'Report state': 'Not yet verified', 'S
ubmitter name': 'Brian'}]}
--
new stuff
--
['Bob', 'Brian']
--
{'Submit date': '2000/06/13, 11:45:01', 'Page': 38, 'Submit mode': '', 'Report s
tate': 'Not yet verified', 'Submitter name': 'Bob'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 42, 'Submit mode': 'email', 'Rep
ort state': 'Not yet verified', 'Submitter name': 'Bob'}
--
{'Submit date': '2000/06/13, 11:45:01', 'Page': 40, 'Submit mode': '', 'Report s
tate': 'Not yet verified', 'Submitter name': 'Brian'}
--
['Not yet verified']
--
{'Submit date': '2000/06/13, 11:45:01', 'Page': 38, 'Submit mode': '', 'Report s
tate': 'Not yet verified', 'Submitter name': 'Bob'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 40, 'Submit mode': '', 'Report s
tate': 'Not yet verified', 'Submitter name': 'Brian'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 42, 'Submit mode': 'email', 'Rep
ort state': 'Not yet verified', 'Submitter name': 'Bob'}
--
boundary cases
--
{'Submit date': '2000/06/13, 11:45:01', 'Page': 38, 'Submit mode': '', 'Report s
tate': 'Not yet verified', 'Submitter name': 'Bob'}
{'Submit date': '2000/06/13, 11:45:01', 'Page': 40, 'Submit mode': '', 'Report s
tate': 'Not yet verified', 'Submitter name': 'Brian'}
--
[]
Nonesuch failed

[mark@toy .../PyErrata/AdminTools]$ ls DbaseFilesIndexed/commentDB/
960918301.263-895.data 960918301.506-895.data Submitter-name indexes.log
960918301.42-895.data Report-state indexes.lck

[mark@toy .../PyErrata/AdminTools]$ more DbaseFilesIndexed/commentDB/indexes.log
960918301.266 Requested: 895, writer
960918301.266 Aquired: 895
960918301.36 Released: 895
960918301.36 Requested: 895, writer
960918301.361 Aquired: 895
960918301.419 Released: 895
960918301.422 Requested: 895, writer
960918301.422 Aquired: 895
960918301.46 Released: 895
...more...

,ch14.17404 Page 886 Wednesday, February 7, 2001 2:54 PM

Designing for Reuse and Growth 887

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

One drawback to this interface is that it works only on a machine that supports
the fcntl.flock call (notice that I ran the previous test on Linux). If you want to
use these classes to support indexed file/shelve databases on other machines, you
could delete or stub out this call in the mutex module to do nothing and return.
You won’t get safe updates if you do, but many applications don’t need to care:

try:
 import fcntl
 from FCNTL import *
except ImportError:
 class fakeFcntl:
 def flock(self, fileno, flag): return
 fcntl = fakeFcntl()
 LOCK_SH = LOCK_EX = LOCK_UN = 0

You might instead instrument MutexCntl.lockFile to do nothing in the pres-
ence of a command-line argument flag, mix in a different MutexCntl class at the
bottom that does nothing on lock calls, or hunt for platform-specific locking mech-
anisms (e.g., the Windows extensions package exports a Windows-only file lock-
ing call; see its documentation for details).

Regardless of whether you use locking or not, the dbaseindexed flat-files plus
multiple-shelve indexing scheme can speed access by keys for large databases.
However, it would also require changes to the top-level CGI script logic that
implements “Index only” displays, and so is not without seams. It may also per-
form poorly for very large databases, as record information would span multiple
files. If pressed, we could finally extend the database classes to talk to a real data-
base system such as Oracle, MySQL, PostGres, or Gadfly (described in Chapter 16).

All of these options are not without trade-offs, but we have now come danger-
ously close to stepping beyond the scope of this chapter. Because the PyErrata
database modules were designed with neither general applicability nor broad scal-
ability in mind, additional mutations are left as suggested exercises.

,ch14.17404 Page 887 Wednesday, February 7, 2001 2:54 PM

