
The following material appeared in the third edition of this book but was cut in the fourth. It has not

been updated for Python 3.X, but is provided as is to serve as PyForm documentation.

PyForm: A Persistent Object Viewer

Instead of going into additional database interface details that are freely available at Python.org, I’m going

to close out this chapter by showing you one way to combine the GUI technology we met earlier in the text

with the persistence techniques introduced in this chapter. This section presents PyForm, a Tkinter GUI

designed to let you browse and edit tables of records:

 Tables browsed are shelves, DBM files, in-memory dictionaries, or any other object that looks and

feels like a dictionary.

 Records within tables browsed can be class instances, simple dictionaries, strings, or any other object

that can be translated to and from a dictionary.

Although this example is about GUIs and persistence, it also illustrates Python design techniques. To keep

its implementation both simple and type-independent, the PyForm GUI is coded to expect tables to look

like dictionaries of dictionaries. To support a variety of table and record types, PyForm relies on separate

wrapper classes to translate tables and records to the expected protocol:

 At the top table level, the translation is easy—shelves, DBM files, and in-memory dictionaries all have

the same key-based interface.

 At the nested record level, the GUI is coded to assume that stored items have a dictionary-like interface

too, but classes intercept dictionary operations to make records compatible with the PyForm protocol.

Records stored as strings are converted to and from the dictionary objects on fetches and stores;

records stored as class instances are translated to and from attribute dictionaries. More specialized

translations can be added in new table wrapper classes.

The net effect is that PyForm can be used to browse and edit a wide variety of table types, despite its

dictionary interface expectations. When PyForm browses shelves and DBM files, table changes made

within the GUI are persistent—they are saved in the underlying files. When used to browse a shelve of

class instances, PyForm essentially becomes a GUI frontend to a simple object database that is built using

standard Python persistence tools.

Processing Shelves with Code

Before we get to the GUI, though, let’s see why you’d want one in the first place. To experiment with

shelves in general, I first coded a canned test datafile. The script in Example 19-19 hardcodes a dictionary

used to populate databases (cast), as well as a class used to populate shelves of class instances (Actor).

Example Error! No text of specified style in document.-1. PP3E\Dbase\testdata.py

definitions for testing shelves, dbm, and formgui

cast = {

 'rob': {'name': ('Rob', 'P'), 'job': 'writer', 'spouse': 'Laura'},

 'buddy': {'name': ('Buddy', 'S'), 'job': 'writer', 'spouse': 'Pickles'},

 'sally': {'name': ('Sally', 'R'), 'job': 'writer'},

 'laura': {'name': ('Laura', 'P'), 'spouse': 'Rob', 'kids':1},

 'milly': {'name': ('Milly', '?'), 'spouse': 'Jerry', 'kids':2},

 'mel': {'name': ('Mel', 'C'), 'job': 'producer'},

 'alan': {'name': ('Alan', 'B'), 'job': 'comedian'}

}

class Actor: # unnested file-level class

 def __init__(self, name=(), job=''): # no need for arg defaults,

 self.name = name # for new pickler or formgui

 self.job = job

 def __setattr__(self, attr, value): # on setattr(): validate

 if attr == 'kids' and value > 10: # but set it regardless

 print 'validation error: kids =', value

 if attr == 'name' and type(value) != type(()):

 print 'validation error: name type =', type(value)

 self.__dict__[attr] = value # don't trigger __setattr__

The cast object here is intended to represent a table of records (it’s really a dictionary of dictionaries

when written out in Python syntax like this). Now, given this test data, it’s easy to populate a shelve with

cast dictionaries. Simply open a shelve and copy over cast, key for key, as shown in Example 19-20.

Example Error! No text of specified style in document.-2. PP3E\Dbase\castinit.py

import shelve

from testdata import cast

db = shelve.open('data/castfile') # create a new shelve

for key in cast.keys():

 db[key] = cast[key] # store dictionaries in shelve

Once you’ve done that, it’s almost as easy to verify your work with a script that prints the contents of the

shelve, as shown in Example 19-21.

Example Error! No text of specified style in document.-3. PP3E\Dbase\castdump.py

import shelve

db = shelve.open('data/castfile') # reopen shelve

for key in db.keys(): # show each key,value

 print key, db[key]

Here are these two scripts in action, populating and displaying a shelve of dictionaries:

...\PP3E\Dbase>python castinit.py

...\PP3E\Dbase>python castdump.py

alan {'job': 'comedian', 'name': ('Alan', 'B')}

mel {'job': 'producer', 'name': ('Mel', 'C')}

buddy {'spouse': 'Pickles', 'job': 'writer', 'name': ('Buddy', 'S')}

sally {'job': 'writer', 'name': ('Sally', 'R')}

rob {'spouse': 'Laura', 'job': 'writer', 'name': ('Rob', 'P')}

milly {'spouse': 'Jerry', 'name': ('Milly', '?'), 'kids': 2}

laura {'spouse': 'Rob', 'name': ('Laura', 'P'), 'kids': 1}

So far, so good; but here is where you reach the limitations of manual shelve processing: to modify a shelve

you need much more general tools. You could write little Python scripts that each perform very specific

updates. Or you might even get by for awhile typing such update commands by hand in the interactive

interpreter:

>>> import shelve

>>> db = shelve.open('data/castfile')

>>> rec = db['rob']

>>> rec['job'] = 'hacker'

>>> db['rob'] = rec

For all but the most trivial databases, though, this will get tedious in a hurry—especially for a system’s end

users. What you’d really like is a GUI that lets you view and edit shelves arbitrarily, and that can be started

up easily from other programs and scripts, as shown in Example 19-22.

Example Error! No text of specified style in document.-4. PP3E\Dbase\castview.py

import shelve

from TableBrowser.formgui import FormGui # after initcast

db = shelve.open('data/castfile') # reopen shelve file

FormGui(db).mainloop() # browse existing shelve-of-dicts

To make this particular script work, we need to move on to the next section.

Adding a Graphical Interface

The path traced in the last section really is what led me to write PyForm, a GUI tool for editing arbitrary

tables of records. When those tables are shelves and DBM files, the data PyForm displays is persistent; it

lives beyond the GUI’s lifetime. Because of that, PyForm can be seen as a simple database browser.

We’ve already met all the GUI interfaces PyForm uses earlier in this book, so I won’t go into all of its

implementation details here (see the chapters in Part III for background details). Before we see the code at

all, though, let’s see what it does. Figure 19-1 shows PyForm in action on Windows, browsing a shelve of

persistent instance objects, created from the testdata module’s Actor class. It looks slightly different

but works the same on Linux and Macs.

[[]]

Figure Error! No text of specified style in document.-1. PyForm displaying a shelve of

Actor objects

PyForm uses a three-window interface to the table being browsed; all windows are packed for proper

window expansion and clipping, as set by the rules we studied earlier in this book. The window in the

upper left of Figure 19-1 is the main window, created when PyForm starts; it has buttons for navigating

through a table, finding items by key, and updating, creating, and deleting records (more useful when

browsing tables that persist between runs). The table (dictionary) key of the record currently displayed

shows up in the input field in the middle of this window.

The “index” button pops up the listbox window in the upper right, and selecting a record in either window

at the top creates the form window at the bottom. The form window is used both to display a record and to

edit it—if you change field values and press “store,” the record is updated. Pressing “new” clears the form

for input of new values (fill in the Key=> field and press “store” to save the new record).

Field values are typed with Python syntax, so strings are quoted (more on this later). When browsing a

table with records that contain different sets of field names, PyForm erases and redraws the form window

for new field sets as new records are selected. To avoid seeing the window re-created, use the same format

for all records within a given table.

PyForm GUI Implementation

On to the code; the first thing I did when writing PyForm was to code utility functions to hide some of the

details of widget creation. By making a few simplifying assumptions (e.g., packing protocol), the module in

Example 19-23 helps keep some GUI coding details out of the rest of the PyForm implementation.

Example Error! No text of specified style in document.-5. PP3E\Dbase\TableBrowser\guitools.py

added extras for entry width, calcgui font/color

from Tkinter import *

def frame(root, side, **extras):

 widget = Frame(root)

 widget.pack(side=side, expand=YES, fill=BOTH)

 if extras: widget.config(**extras) # or apply(f, (), {})

 return widget

def label(root, side, text, **extras):

 widget = Label(root, text=text, relief=RIDGE)

 widget.pack(side=side, expand=YES, fill=BOTH)

 if extras: widget.config(**extras)

 return widget

def button(root, side, text, command, **extras):

 widget = Button(root, text=text, command=command)

 widget.pack(side=side, expand=YES, fill=BOTH)

 if extras: widget.config(**extras)

 return widget

def entry(root, side, linkvar, **extras):

 widget = Entry(root, relief=SUNKEN, textvariable=linkvar)

 widget.pack(side=side, expand=YES, fill=BOTH)

 if extras: widget.config(**extras)

 return widget

Armed with this utility module, the file in Example 19-24 implements the rest of the PyForm GUI. It uses

the GuiMixin module we wrote in Chapter 11, for simple access to standard pop-up dialogs. It’s also

coded as a class that can be specialized in subclasses or attached to a larger GUI. I run PyForm as a

standalone program. Attaching its FormGui class really attaches its main window only, but it can be used

to provide a precoded table browser widget for other GUIs.

This file’s FormGui class creates the GUI shown in Figure 19-1 and responds to user interaction in all

three of the interface’s windows. Because we’ve already covered all the GUI tools that PyForm uses, you

should study this module’s source code listing for additional implementation details. Notice, though, that

this file knows almost nothing about the table being browsed, other than that it looks and feels like a

dictionary of dictionaries. To understand how PyForm supports browsing things such as shelves of class

instances, you will need to look elsewhere (or at least wait for the next module).

Example Error! No text of specified style in document.-6. PP3E\Dbase\TableBrowser\formgui.py

#!/usr/local/bin/python

PyForm: a persistent table viewer GUI. Uses guimixin for std dialogs.

Assumes the browsed table has a dictionary-of-dictionary interface, and

relies on table wrapper classes to convert other structures as needed.

Store an initial record with dbinit script to start a dbase from scratch.

Caveat: doesn't do object method calls, shows complex field values poorly.

from Tkinter import * # Tk widgets

from guitools import frame, label, button, entry # widget builders

from PP3E.Gui.Tools.guimixin import GuiMixin # common methods

class FormGui(GuiMixin, Frame):

 def __init__(self, mapping): # an extended frame

 Frame.__init__(self) # on default top-level

 self.pack(expand=YES, fill=BOTH) # all parts expandable

 self.master.title('PyForm 2.0 - Table browser')

 self.master.iconname("PyForm")

 self.makeMainBox()

 self.table = mapping # a dict, dbm, shelve, Table,..

 self.index = mapping.keys() # list of table keys

 self.cursor = -1 # current index position

 self.currslots = [] # current form's (key,text)s

 self.currform = None # current form window

 self.listbox = None # index listbox window

 def makeMainBox(self):

 frm = frame(self, TOP)

 frm.config(bd=2)

 button(frm, LEFT, 'next', self.onNext) # next in list

 button(frm, LEFT, 'prev', self.onPrev) # backup in list

 button(frm, LEFT, 'find', self.onFind) # find from key

 frm = frame(self, TOP)

 self.keytext = StringVar() # current record's key

 label(frm, LEFT, 'KEY=>') # change before 'find'

 entry(frm, LEFT, self.keytext)

 frm = frame(self, TOP)

 frm.config(bd=2)

 button(frm, LEFT, 'store', self.onStore) # updated entry data

 button(frm, LEFT, 'new', self.onNew) # clear fields

 button(frm, LEFT, 'index', self.onMakeList) # show key list

 button(frm, LEFT, 'delete', self.onDelete) # show key list

 button(self, BOTTOM,'quit', self.quit) # from guimixin

 def onPrev(self):

 if self.cursor <= 0:

 self.infobox('Backup', "Front of table")

 else:

 self.cursor -= 1

 self.display()

 def onNext(self):

 if self.cursor >= len(self.index)-1:

 self.infobox('Advance', "End of table")

 else:

 self.cursor += 1

 self.display()

 def sameKeys(self, record): # can we reuse the same form?

 keys1 = record.keys() # or map(lambda x:x[0], list)

 keys2 = [x[0] for x in self.currslots]

 keys1.sort(); keys2.sort() # keys list order differs

 return keys1 == keys2 # if insertion-order differs

 def display(self):

 key = self.index[self.cursor] # show record at index cursor

 self.keytext.set(key) # change key in main box

 record = self.table[key] # in dict, dbm, shelf, class

 if self.sameKeys(record):

 self.currform.title('PyForm - Key=' + repr(key))

 for (field, text) in self.currslots:

 text.set(repr(record[field])) # same fields? reuse form

 else: # repr(x) works like expr 'x'

 if self.currform:

 self.currform.destroy() # different fields?

 new = Toplevel() # replace current box

 new.title('PyForm - Key=' + repr(key)) # new resizable window

 new.iconname("pform")

 left = frame(new, LEFT)

 right = frame(new, RIGHT)

 self.currslots = [] # list of (field, entry)

 for field in record.keys():

 label(left, TOP, repr(field)) # key,value to strings

 text = StringVar() # we could sort keys here

 text.set(repr(record[field]))

 entry(right, TOP, text, width=40)

 self.currslots.append((field, text))

 self.currform = new

 new.protocol('WM_DELETE_WINDOW', lambda:0) # ignore destroy's

 self.selectlist() # update listbox

 def onStore(self):

 if not self.currform: return

 key = self.keytext.get()

 if key in self.index: # change existing record

 record = self.table[key] # not: self.table[key][field]=

 else:

 record = {} # create a new record

 self.index.append(key) # add to index and listbox

 if self.listbox:

 self.listbox.insert(END, key) # or at len(self.index)-1

 for (field, text) in self.currslots:

 try: # fill out dictionary rec

 record[field] = eval(text.get()) # convert back from string

 except:

 self.errorbox('Bad data: "%s" = "%s"' % (field, text.get()))

 record[field] = None

 self.table[key] = record # add to dict, dbm, shelf,...

 self.onFind(key) # readback: set cursor,listbox

 def onNew(self):

 if not self.currform: return # clear input form and key

 self.keytext.set('?%d' % len(self.index)) # default key unless typed

 for (field, text) in self.currslots: # clear key/fields for entry

 text.set('')

 self.currform.title('Key: ?')

 def onFind(self, key=None):

 target = key or self.keytext.get() # passed in, or entered

 try:

 self.cursor = self.index.index(target) # find label in keys list

 self.display()

 except:

 self.infobox('Not found', "Key doesn't exist", 'info')

 def onDelete(self):

 if not self.currform or not self.index: return

 currkey = self.index[self.cursor]

 del self.table[currkey] # table, index, listbox

 del self.index[self.cursor:self.cursor+1] # like "list[i:i+1] = []"

 if self.listbox:

 self.listbox.delete(self.cursor) # delete from listbox

 if self.cursor < len(self.index):

 self.display() # show next record if any

 elif self.cursor > 0:

 self.cursor = self.cursor-1 # show prior if delete end

 self.display()

 else: # leave box if delete last

 self.onNew()

 def onList(self,evnt):

 if not self.index: return # on listbox double-click

 index = self.listbox.curselection() # fetch selected key text

 label = self.listbox.get(index) # or use listbox.get(ACTIVE)

 self.onFind(label) # and call method here

 def onMakeList(self):

 if self.listbox: return # already up?

 new = Toplevel() # new resizable window

 new.title("PyForm - Key Index") # select keys from a listbox

 new.iconname("pindex")

 frm = frame(new, TOP)

 scroll = Scrollbar(frm)

 list = Listbox(frm, bg='white')

 scroll.config(command=list.yview, relief=SUNKEN)

 list.config(yscrollcommand=scroll.set, relief=SUNKEN)

 scroll.pack(side=RIGHT, fill=BOTH)

 list.pack(side=LEFT, expand=YES, fill=BOTH) # pack last, clip first

 for key in self.index: # add to list-box

 list.insert(END, key) # or: sort list first

 list.config(selectmode=SINGLE, setgrid=1) # select,resize modes

 list.bind('<Double-1>', self.onList) # on double-clicks

 self.listbox = list

 if self.index and self.cursor >= 0: # highlight position

 self.selectlist()

 new.protocol('WM_DELETE_WINDOW', lambda:0) # ignore destroy's

 def selectlist(self): # listbox tracks cursor

 if self.listbox:

 self.listbox.select_clear(0, self.listbox.size())

 self.listbox.select_set(self.cursor)

if __name__ == '__main__':

 from PP3E.Dbase.testdata import cast # self-test code

 for k in cast.keys(): print k, cast[k] # view in-memory dict-of-dicts

 FormGui(cast).mainloop()

 for k in cast.keys(): print k, cast[k] # show modified table on exit

The file’s self-test code starts up the PyForm GUI to browse the in-memory dictionary of dictionaries

called “cast” in the testdata module listed earlier. To start PyForm, you simply make and run the

FormGui class object this file defines, passing in the table to be browsed. Here are the messages that show

up in stdout after running this file and editing a few entries displayed in the GUI; the dictionary is

displayed on GUI startup and exit:

...\PP3E\Dbase\TableBrowser>python formgui.py

alan {'job': 'comedian', 'name': ('Alan', 'B')}

sally {'job': 'writer', 'name': ('Sally', 'R')}

rob {'spouse': 'Laura', 'job': 'writer', 'name': ('Rob', 'P')}

mel {'job': 'producer', 'name': ('Mel', 'C')}

milly {'spouse': 'Jerry', 'name': ('Milly', '?'), 'kids': 2}

buddy {'spouse': 'Pickles', 'job': 'writer', 'name': ('Buddy', 'S')}

laura {'spouse': 'Rob', 'name': ('Laura', 'P'), 'kids': 1}

alan {'job': 'comedian', 'name': ('Alan', 'B')}

jerry {'spouse': 'Milly', 'name': 'Jerry', 'kids': 0}

sally {'job': 'writer', 'name': ('Sally', 'R')}

rob {'spouse': 'Laura', 'job': 'writer', 'name': ('Rob', 'P')}

mel {'job': 'producer', 'name': ('Mel', 'C')}

milly {'spouse': 'Jerry', 'name': ('Milly', '?'), 'kids': 2}

buddy {'spouse': 'Pickles', 'job': 'writer', 'name': ('Buddy', 'S')}

laura {'name': ('Laura', 'P'), 'kids': 3, 'spouse': 'bob'}

The last line represents a change made in the GUI. Since this is an in-memory table, changes made in the

GUI are not retained (dictionaries are not persistent by themselves). To see how to use the PyForm GUI on

persistent stores such as DBM files and shelves, we need to move on to the next topic.

PyForm Table Wrappers

The following file defines generic classes that “wrap” (interface with) various kinds of tables for use in

PyForm. It’s what makes PyForm useful for a variety of table types.

The prior module was coded to handle GUI chores, and it assumes that tables expose a dictionary-of-

dictionaries interface. Conversely, this next module knows nothing about the GUI but provides the

translations necessary to browse nondictionary objects in PyForm. In fact, this module doesn’t even import

Tkinter at all—it deals strictly in object protocol conversions and nothing else. Because PyForm’s

implementation is divided into functionally distinct modules like this, it’s easier to focus on each module’s

task in isolation.

Here is the hook between the two modules: for special kinds of tables, PyForm’s FormGui is passed an

instance of the Table class coded here. The Table class intercepts table index fetch and assignment

operations and uses an embedded record wrapper class to convert records to and from dictionary format as

needed.

For example, because DBM files can store only strings, Table converts real dictionaries to and from their

printable string representation on table stores and fetches. For class instances, Table extracts the object’s

__dict__ attribute dictionary on fetches and copies a dictionary’s fields to attributes of a newly

generated class instance on stores.
3
 The end result is that the GUI thinks the table is all dictionaries, even if

it is really something very different here.

While you study this module’s listing, shown in Example 19-25, notice that there is nothing here about the

record formats of any particular database. In fact, there was none in the GUI-related formgui module

either. Because neither module cares about the structure of fields used for database records, both can be

used to browse arbitrary records.

Example Error! No text of specified style in document.-7. PP3E\Dbase\formtable.py

PyForm table wrapper classes and tests

Because PyForm assumes a dictionary-of-dictionary interface, this module

converts strings and class instance records to and from dicts. PyForm

contains the table mapping--Table is not a PyForm subclass. Note that

some of the wrapper classes may be useful outside PyForm--DmbOfString can

wrap a dbm containing arbitrary datatypes. Run the dbinit scripts to

start a new database from scratch, and run the dbview script to browse

a database other than the one tested here. No longer requires classes to

have defaults in constructor args, and auto picks up record class from the

first one fetched if not passed in to class-record wrapper. Caveat: still

assumes that all instances in a table are instances of the same class.

records within tables

class DictionaryRecord:

 def todict(self, value):

 return value # to dictionary: no need to convert

 def fromdict(self, value):

 return value # from dictionary: no need to convert

class StringRecord:

 def todict(self, value):

 return eval(value) # convert string to dictionary (or any)

 def fromdict(self, value):

 return str(value) # convert dictionary (or any) to string

class InstanceRecord:

 def __init__(self, Class=None): # need class object to make instances

 self.Class = Class

 def todict(self, value): # convert instance to attr dictionary

 if not self.Class: # get class from obj if not yet known

 self.Class = value.__class__

 return value.__dict__

 def fromdict(self, value): # convert attr dictionary to instance

 try:

 class Dummy: pass # try what new pickle does

 instance = Dummy() # fails in restricted mode

 instance.__class__ = self.Class

 except: # else call class, no args

 instance = self.Class() # init args need defaults

3 Subtle thing revisited: like the new pickle module, PyForm tries to generate a new class instance on store

operations by simply setting a generic instance object's __class__ pointer to the original class; only if this fails does

PyForm fall back on calling the class with no arguments (in which case the class must have defaults for any constructor

arguments other than self). Assignment to __class__ can fail in restricted execution mode. See the class

InstanceRecord in the source listing for further details.

 for attr in value.keys():

 setattr(instance, attr, value[attr]) # set instance attributes

 return instance # may run Class.__setattr__

table containing records

class Table:

 def __init__(self, mapping, converter): # table object, record converter

 self.table = mapping # wrap arbitrary table mapping

 self.record = converter # wrap arbitrary record types

 def storeItems(self, items): # initialize from dictionary

 for key in items.keys(): # do __setitem__ to xlate, store

 self[key] = items[key]

 def printItems(self): # print wrapped mapping

 for key in self.keys(): # do self.keys to get table keys

 print key, self[key] # do __getitem__ to fetch, xlate

 def __getitem__(self, key): # on tbl[key] index fetch

 rawval = self.table[key] # fetch from table mapping

 return self.record.todict(rawval) # translate to dictionary

 def __setitem__(self, key, value): # on tbl[key]=val index assign

 rawval = self.record.fromdict(value) # translate from dictionary

 self.table[key] = rawval # store in table mapping

 def __delitem__(self, key): # delete from table mapping

 del self.table[key]

 def keys(self): # get table mapping keys index

 return self.table.keys()

 def close(self):

 if hasattr(self.table, 'close'): # call table close if has one

 self.table.close() # may need for shelves, dbm

table/record combinations

import shelve, anydbm

def ShelveOfInstance(filename, Class=None):

 return Table(shelve.open(filename), InstanceRecord(Class))

def ShelveOfDictionary(filename):

 return Table(shelve.open(filename), DictionaryRecord())

def ShelveOfString(filename):

 return Table(shelve.open(filename), StringRecord())

def DbmOfString(filename):

 return Table(anydbm.open(filename, 'c'), StringRecord())

def DictOfInstance(dict, Class=None):

 return Table(dict, InstanceRecord(Class))

def DictOfDictionary(dict):

 return Table(dict, DictionaryRecord())

def DictOfString(filename):

 return Table(dict, StringRecord())

ObjectOfInstance = DictOfInstance # other mapping objects

ObjectOfDictionary = DictOfDictionary # classes that look like dicts

ObjectOfString = DictOfString

test common applications

if __name__ == '__main__':

 from sys import argv

 from formgui import FormGui # get dict-based GUI

 from PP3E.Dbase.testdata import Actor, cast # get class, dict-of-dicts

 TestType = 'shelve' # shelve, dbm, dict

 TestInit = 0 # init file on startup?

 TestFile = '../data/shelve1' # external filename

 if len(argv) > 1: TestType = argv[1]

 if len(argv) > 2: TestInit = int(argv[2])

 if len(argv) > 3: TestFile = argv[3]

 if TestType == 'shelve': # Python formtbl.py shelve?

 print 'shelve-of-instance test'

 table = ShelveOfInstance(TestFile, Actor) # wrap shelf in Table object

 if TestInit:

 table.storeItems(cast) # Python formtbl.py shelve 1

 FormGui(table).mainloop()

 table.close()

 ShelveOfInstance(TestFile).printItems() # class picked up on fetch

 elif TestType == 'dbm': # Python formtbl.py dbm

 print 'dbm-of-dictstring test'

 table = DbmOfString(TestFile) # wrap dbm in Table object

 if TestInit:

 table.storeItems(cast) # Python formtbl.py dbm 1

 FormGui(table).mainloop()

 table.close()

 DbmOfString(TestFile).printItems() # dump new table contents

Besides the Table and record-wrapper classes, the module defines generator functions (e.g.,

ShelveOfInstance) that create a Table for all reasonable table and record combinations. Not all

combinations are valid—DBM files, for example, can contain only dictionaries coded as strings because

class instances don’t easily map to the string value format expected by DBM. However, these classes are

flexible enough to allow additional Table configurations to be introduced.

The only thing that is GUI related about this file at all is its self-test code at the end. When run as a script,

this module starts a PyForm GUI to browse and edit either a shelve of persistent Actor class instances or a

DBM file of dictionaries, by passing in the right kind of Table object. The GUI looks like the one we saw

in Figure 19-1 earlier; when run without arguments, the self-test code lets you browse a shelve of class

instances:

...\PP3E\Dbase\TableBrowser>python formtable.py

shelve-of-instance test

...display of contents on exit...

Because PyForm displays a shelve this time, any changes you make are retained after the GUI exits. To

reinitialize the shelve from the cast dictionary in testdata, pass a second argument of 1 (0 means don’t

reinitialize the shelve). To override the script’s default shelve filename, pass a different name as a third

argument:

...\PP3E\Dbase\TableBrowser>python formtable.py shelve 1

...\PP3E\Dbase\TableBrowser>python formtable.py shelve 0 ../data/shelve1

To instead test PyForm on a DBM file of dictionaries mapped to strings, pass a dbm in the first command-

line argument; the next two arguments work the same:

...\PP3E\Dbase\TableBrowser>python formtable.py dbm 1 ..\data\dbm1

dbm-of-dictstring test

...display of contents on exit...

Finally, because these self-tests ultimately process concrete shelve and DBM files, you can manually open

and inspect their contents using normal library calls. Here is what they look like when opened in an

interactive session:

...\PP3E\Dbase\data>ls

dbm1 myfile shelve1

...\PP3E\Dbase\data>python

>>> import shelve >>> db = shelve.open('shelve1')

>>> db.keys()

['alan', 'buddy', 'sally', 'rob', 'milly', 'laura', 'mel']

>>> db['laura']

<PP3E.Dbase.testdata.Actor instance at 799850>

>>> import anydbm

>>> db = anydbm.open('dbm1')

>>> db.keys()

['alan', 'mel', 'buddy', 'sally', 'rob', 'milly', 'laura']

>>> db['laura']

"{'name': ('Laura', 'P'), 'kids': 2, 'spouse': 'Rob'}"

The shelve file contains real Actor class instance objects, and the DBM file holds dictionaries converted

to strings. Both formats are retained in these files between GUI runs and are converted back to dictionaries

for later redisplay.
4

PyForm Creation and View Utility Scripts

The formtable module’s self-test code proves that it works, but it is limited to canned test-case files and

classes. What about using PyForm for other kinds of databases that store more useful kinds of data?

Luckily, both the formgui and the formtable modules are written to be generic—they are independent

of a particular database’s record format. Because of that, it’s easy to point PyForm to databases of your

own; simply import and run the FormGui object with the (possibly wrapped) table you wish to browse.

The required startup calls are not too complex, and you could type them at the interactive prompt every

time you want to browse a database; but it’s usually easier to store them in scripts so that they can be

reused. The script in Example 19-26, for example, can be run to open PyForm on any shelve containing

records stored in class instance or dictionary format.

Example Error! No text of specified style in document.-8. PP3E\Dbase\dbview.py

view any existing shelve directly; this is more general than a

"formtable.py shelve 1 filename" cmdline--only works for Actor;

pass in a filename (and mode) to use this to browse any shelve:

formtable auto picks up class from the first instance fetched;

run dbinit1 to (re)initialize dbase shelve with a template.

from sys import argv

4 Note that DBM files of dictionaries use str and eval to convert to and from strings, but could also simply store the

pickled representations of record dictionaries in DBM files instead using pickle. But since this is exactly what a

shelve of dictionaries does, the str/eval scheme was chosen for illustration purposes here. Suggested exercise:

add a new PickleRecord record class based upon the pickle module's loads and dumps functions described

earlier in this chapter and compare its performance to StringRecord. See also the pickle file database structure

in Chapter 14; its directory scheme with one flat-file per record could be used to implement a "table" here too, with

appropriate Table subclassing.

from formtable import *

from formgui import FormGui

mode = 'class'

file = '../data/mydbase-' + mode

if len(argv) > 1: file = argv[1] # dbview.py file? mode??

if len(argv) > 2: mode = argv[2]

if mode == 'dict':

 table = ShelveOfDictionary(file) # view dictionaries

else:

 table = ShelveOfInstance(file) # view class objects

FormGui(table).mainloop()

table.close() # close needed for some dbm

The only catch here is that PyForm doesn’t handle completely empty tables very well; there is no way to

add new records within the GUI unless a record is already present. That is, PyForm has no record layout

design tool; its “new” button simply clears an existing input form.

Because of that, to start a new database from scratch, you need to add an initial record that gives PyForm

the field layout. Again, this requires only a few lines of code that could be typed interactively, but why not

instead put it in generalized scripts for reuse? The file in Example 19-27 shows one way to go about

initializing a PyForm database with a first empty record.

Example Error! No text of specified style in document.-9. PP3E\Dbase\dbinit1.py

store a first record in a new shelve to give initial fields list;

PyForm GUI requires an existing record before you can add records;

delete the '?' key template record after real records are added;

change mode, file, template to use this for other kinds of data;

if you populate shelves from other datafiles you don't need this;

see dbinit2 for object-based version, and dbview to browse shelves.

import os

from sys import argv

mode = 'class'

file = '../data/mydbase-' + mode

if len(argv) > 1: file = argv[1] # dbinit1.py file? mode??

if len(argv) > 2: mode = argv[2]

try:

 os.remove(file) # delete if present

except: pass

if mode == 'dict':

 template = {'name': None, 'age': None, 'job': None} # start dict shelve

else: from PP3E.Dbase.person import Person # one arg defaulted

 template = Person(None, None) # start object shelve

import shelve

dbase = shelve.open(file) # create it now

dbase['?empty?'] = template

dbase.close()

Now, simply change some of this script’s settings or pass in command-line arguments to generate a new

shelve-based database for use in PyForm. You can substitute any fields list or class name in this script to

maintain a simple object database with PyForm that keeps track of real-world information (we’ll see two

such databases in action in a moment).

The empty record created by this script shows up with the key ?empty? when you first browse the

database in PyForm with dbview; replace it with a first real record using the PyForm store key, and you

are in business. As long as you don’t change the database’s shelve outside of the GUI, all of its records will

have the same fields format, as defined in the initialization script.

But notice that the dbinit1 script goes straight to the shelve file to store the first record; that’s fine today,

but it might break if PyForm is ever changed to do something more custom with its stored data

representation. Perhaps a better way to populate tables outside the GUI is to use the Table wrapper

classes it employs. The following alternative script, for instance, initializes a PyForm database with

generated Table objects, not direct shelve operations (see Example 19-28).

Example Error! No text of specified style in document.-10. PP3E\Dbase\dbinit2.py

this works too--based on Table objects not manual shelve ops;

store a first record in shelve, as required by PyForm GUI.

from formtable import *

import sys, os

mode = 'dict'

file = '../data/mydbase-' + mode

if len(sys.argv) > 1: file = sys.argv[1]

if len(sys.argv) > 2: mode = sys.argv[2]

try:

 os.remove(file)

except: pass

if mode == 'dict':

 table = ShelveOfDictionary(file)

 template = {'name': None, 'shoesize': None, 'language': 'Python'}

else: from PP3E.Dbase.person import Person

 table = ShelveOfInstance(file, Person)

 template = Person(None, None).__dict__

table.storeItems({'?empty?': template})

table.close()

Creating and browsing custom databases

Let’s put the prior section’s scripts to work to initialize and edit a couple of custom databases. Figure 19-2

shows one being browsed after initializing the database with a script and adding a handful of real records

within the GUI.

[[]]

Figure Error! No text of specified style in document.-2. A shelve of Person objects

(dbinit1, dbview)

The listbox here shows the record I added to the shelve within the GUI. I ran the following commands to

initialize the database with a starter record and to open it in PyForm to add records (that is, Person class

instances):

...\PP3E\Dbase\TableBrowser>python dbinit1.py

...\PP3E\Dbase\TableBrowser>python dbview.py

You can tweak the class name or fields dictionary in the dbinit scripts to initialize records for any sort of

database you care to maintain with PyForm; use dictionaries if you don’t want to represent persistent

objects with classes (but classes let you add other sorts of behavior as methods not visible under PyForm).

Be sure to use a distinct filename for each database; the initial ?empty? record can be deleted as soon as

you add a real entry (later, simply select an entry from the listbox and press “new” to clear the form for

input of a new record’s values).

The data displayed in the GUI represents a true shelve of persistent Person class instance objects—

changes and additions made in the GUI will be retained for the next time you view this shelve with

PyForm. If you like to type, though, you can still open the shelve directly to check PyForm’s work:

...\PP3E\Dbase\data>ls

mydbase-class myfile shelve1

...\PP3E\Dbase\data>python

>>> import shelve

>>> db = shelve.open('mydbase-class')

>>> db.keys()

['emily', 'jerry', '?empty?', 'bob', 'howard']

>>> db['bob']

<PP3E.Dbase.person.Person instance at 798d70>

>>> db['emily'].job

'teacher'

>>> db['bob'].tax

30000.0

Notice that bob is an instance of the Person class we met earlier in this chapter (see the section “Shelve

Files”). Assuming that the person module is still the version that introduced a __getattr_ _ method,

asking for a shelved object’s tax attribute computes a value on the fly because this really invokes a

class method. Also note that this works even though Person was never imported here—Python loads

the class internally when re-creating its shelved instances.

You can just as easily base a PyForm-compatible database on an internal dictionary structure, instead of on

classes. Figure 19-3 shows one being browse after being initialized with a script and populated with the

GUI.

[[]]

Figure Error! No text of specified style in document.-3. A shelve of dictionaries (dbinit2,

dbview)

Besides its different internal format, this database has a different record structure (its record’s field names

differ from the last example), and it is stored in a shelve file of its own. Here are the commands I used to

initialize and edit this database:

...\PP3E\Dbase\TableBrowser>python dbinit2.py ../data/mydbase-dict dict

...\PP3E\Dbase\TableBrowser>python dbview.py ../data/mydbase-dict dict

After adding a few records (that is, dictionaries) to the shelve, you can either view them again in PyForm or

open the shelve manually to verify PyForm’s work:

...\PP3E\Dbase\data>ls

mydbase-class mydbase-dict myfile shelve1

...\PP3E\Dbase\data>python

>>> db = shelve.open('mydbase-dict')

>>> db.keys()

['tom', 'guido', '?empty?', 'larry', 'randal', 'mel']

>>> db['guido']

{'shoesize': 42, 'name': 'benevolent dictator', 'language': 'Python'}

>>> db['mel']['shoesize']

{'left': 7.5, 'right': 7L}

This time, shelve entries are really dictionaries, not instances of a class or converted strings. PyForm

doesn’t care, though—because all tables are wrapped to conform to PyForm’s interface, both formats look

the same when browsed in the GUI.

Data as Code

Notice that the shoesize and language fields in the screenshot in Figure 19-3 really are a dictionary

and a list. You can type any Python expression syntax into this GUI’s form fields to give values (that’s why

strings are quoted there).

PyForm uses the Python built-in repr function to convert value objects for display (repr(x) is like the

older 'x' expression and is similar to str(x) but yields an as-code display that adds quotes around

strings). To convert from a string back to value objects, PyForm uses the Python eval function to parse

and evaluate the code typed into fields. The key entry/display field in the main window does not add or

accept quotes around the key string because keys must still be strings in things such as shelves (even

though fields can be arbitrary types).

As we’ve seen at various points in this book, eval (and its statement cousin, exec) is powerful but

dangerous—you never know when a user might type something that removes files, hangs the system,

emails your boss, and so on. If you can’t be sure that field values won’t contain harmful code (whether

malicious or otherwise), use the rexec restricted execution mode tools we met in Chapter 18 to evaluate

strings. Alternatively, you can simply limit the kinds of expressions allowed and evaluate them with

simpler tools (e.g., int, str) or store all data as strings.

Browsing Other Kinds of Objects with PyForm

Although PyForm expects to find a dictionary-of-dictionary interface (protocol) in the tables it browses, a

surprising number of objects fit this mold because dictionaries are so pervasive in Python object internals.

In fact, PyForm can be used to browse things that have nothing to do with the notion of database tables of

records at all, as long as they can be made to conform to the protocol.

For instance, the Python sys.modules table we met in Chapter 3 is a built-in dictionary of loaded

module objects. With an appropriate wrapper class to make modules look like dictionaries, there’s no

reason we can’t browse the in-memory sys.modules with PyForm too, as shown in Example 19-29.

Example Error! No text of specified style in document.-11. PP3E\Dbase\TableBrowser\viewsysmod.py

view the sys.modules table in FormGui

class modrec:

 def todict(self, value):

 return value.__dict__ # not dir(value): need dict

 def fromdict(self, value):

 assert 0, 'Module updates not supported'

import sys

from formgui import FormGui

from formtable import Table

FormGui(Table(sys.modules, modrec())).mainloop()

This script defines a class to pull out a module’s __dict__ attribute dictionary (formtable’s

InstanceRecord won’t do, because it also looks for a __class__). The rest of it simply passes

sys.modules to PyForm (FormGui) wrapped in a Table object; the result appears in Figure 19-4.

[[]]

Figure Error! No text of specified style in document.-4. FormGui browsing sys.modules

(viewsysmod)

With similar record and table wrappers, all sorts of objects could be viewed in PyForm. As usual in Python,

all that matters is that they provide a compatible interface.

Browsing Other Kinds of Databases with PyForm

In fact, with just a little creativity, we could also write table wrappers that allow the PyForm GUI to view

objects in ZODB databases and records in SQL databases—third-party systems we studied earlier in this

chapter:

 ZODB should be simple: it is an access-by-key storage medium with a dictionary-like interface similar

to shelves. We would need to provide a close method that commits changes, though, since the table

wrapper protocol expects one.

 SQL databases would be more challenging, since they are composed of tables of rows, not objects

stored under unique keys. We could, however, define a column to be the unique key values for records

in a table and run SQL queries to fetch by key on indexing.

In deference to space, we’ll leave the second of these extensions as a suggested exercise. The first is

straightforward: Example 19-30 launches the PyForm GUI to browse the ZODB people database we used

as an example earlier in this chapter. This script works—it allows you to use the GUI to browse and update

persistent class instances stored in a ZODB object database—but it suffers from some innate limitations in

the GUI’s design.

As coded, PyForm doesn’t support instances of more than one class in the database, and it has no way to

call class methods. More subtly, PyForm assumes that instances either are created from a class with no

nondefault constructor arguments or support __class__ attribute assignments (its code tries both

schemes to re-create the instance from its dictionary-based representation). The former of these constraints

was not coded in the original class, and the latter did not work for classes derived from ZODB persistence

classes when this script was tested.

Because of these constraints, the test script in Example 19-30 uses an empty class to initialize the database:

since methods and derived subclasses aren’t yet supported, classes in PyForm are little more than flat

attribute namespaces. As currently coded, PyForm does not leverage the full power of Python classes—any

methods they contain may still be called by code outside the context of the PyForm GUI, but they have no

purpose within it. We’ll explore some of these design issues in more detail in the next section.

Perhaps just as remarkable as its flaws, though, is the fact that PyForm can be used on a ZODB database at

all—by encapsulating the database behind a common object interface, it supports any conforming object.

Example Error! No text of specified style in document.-12. PP3E\Database\ZODBscripts\viewzodb.py

view the person ZODB database in PyForm's FormGui;

FileDB maps indexing to db root, close does commit;

caveat 1: FormGui doesn't yet allow mixed class types;

caveat 2: FormGui has no way to call class methods;

caveat 3: Persistent subclasses don't allow __class__

to be set: must have defaults for all __init__ args;

Person here works only if always defined in __main__;

import sys

filename = 'data/people-simple.fs'

from zodbtools import FileDB

from PP3E.Dbase.TableBrowser.formgui import FormGui

from PP3E.Dbase.TableBrowser.formtable import Table, InstanceRecord

class Person: pass

initrecs = {'bob': dict(name='bob', job='devel', pay=30),

 'sue': dict(name='sue', job='music', pay=40)}

dbtable = Table(FileDB(filename), InstanceRecord(Person))

if len(sys.argv) > 1:

 for key in dbtable.keys():

 del dbtable[key] # "viewzodb.py -" inits db

 dbtable.storeItems(initrecs) # "viewzodb.py" browses db

FormGui(dbtable).mainloop()

dbtable.printItems()

dbtable.close()

Run this code on your machine to see its windows—they are exactly like those we’ve seen before, but the

records browsed are objects that reside in a ZODB database instead of a shelve.

PyForm Limitations

Although the sys.modules and ZODB viewer scripts of the last two sections work, they highlight a few

limitations of PyForm’s current design:

Two levels only

PyForm is set up to handle a two-dimensional table/record-mapping structure only. You can’t descend

further into fields shown in the form, large data structures in fields print as long strings, and complex

objects such as nested modules, classes, and functions that contain attributes of their own simply show

their default print representation. We could add object viewers to inspect nested objects interactively,

but they might be complex to code.

No big forms

PyForm is not equipped to handle a large number of record fields—if you select the os module’s entry

in the index listbox in Figure 19-4, you’ll get a huge form that is likely too big to even fit on your

screen (the os module has lots and lots of attributes; it goes off my screen after about 40). We could

fix this with a scroll bar, but it’s unlikely that records in the databases that PyForm was designed to

view will have many dozens of fields.

Data attributes only

PyForm displays record attribute values, but it does not support calling method functions of objects

being browsed and cannot display dynamically computed attributes (e.g., the tax attribute in Person

objects). Since some class methods require arguments to be passed, an additional interface would be

necessary; required arguments could be extracted from the method function itself (hint: see built-in

function and code attributes such as function.func_code.co_argcount).

One class per table

PyForm currently assumes all instances in a table are of the same class, even though that’s not a

requirement for shelves in general.

New style classes with __slots__ don’t work

As coded, PyForm may not currently support some instances of new style classes. In particular, new

style classes with a __slots__ attribute may not have a __dict__ namespace dictionary and so

will not work in PyForm (slots save the space normally taken by the instance __dict__, and may be

fetched quicker).

This same restriction currently exists in the Python pickle module, though—a class that defines

__slots__ without defining __getstate__ (called to return a state to pickle) cannot be

pickled—so this is not an additional constraint imposed by the GUI. Supporting __slots__ in

addition to __dict__ may be possible, but we leave this as an exercise (this may require a class tree

climb to collect all __slot__ lists in all superclasses, or inspecting the result of a dir call).

Wrapping protocol alternatives

In some cases, it may be possible to avoid the to/from dictionary conversion for class instances

browsed. The trick would be to wrap records rather than tables. This would almost allow us to get rid

of the Table wrapper class completely for this use case—the GUI could browse either a shelve of

instances or a shelve of dictionaries directly, with no conversions. It would not, however, handle other

use cases (e.g., DBM files of evaluated strings), and it might turn out to be more complex than the

current general dictionary-based scheme, due to extra-special cases.

The last item in the preceding list is a subtle design point, and it merits some addition explanation. PyForm

current overloads table index fetch and assignment, and the GUI internally uses dictionaries to represent

records. Fetches assume a dictionary-like object comes back, and stores make a new dictionary object (or

use the current one), fill it out, and pass it off to the Table wrapper for conversion to the table’s

underlying record implementation. When browsing tables of instances, the fetch conversion is trivial (we

use the instance’s __dict__ directly), but stores must create and fill out a new instance.

It would be almost as easy to overload record field index fetch and assignment instead, to avoid converting

dictionaries to instances, and possibly avoid the Table wrapper layer. In this scheme, records held in

PyForm might be whatever object the table stores (not necessarily dictionaries), and each record field fetch

or assignment in PyForm would be routed back to record wrapper classes.

For example, by wrapping instance records in a class that maps dictionary field indexing to class attributes

with __getitem__ and __setitem__ overload methods, the GUI might browse actual class instance

objects. These two overload methods would simply call the getattr and setattr built-in functions to

access the attribute corresponding to the key by string name, and the keys call in the GUI used to extract

field names could be mapped by the record wrapper to the instance __dict__.

The trickiest part of this scheme is that the GUI would have to know how to make a new empty record

before filling its fields—this would likely require that the GUI have knowledge of the concrete type of the

record (dictionary or instance, as well as the class if it is an instance) or use of a Table wrapper with a

customizable method for creating a new empty record. By building and filling dictionaries, the GUI

currently finesses this issue completely and delegates it to the customized table and record wrappers.

There are also a few substantial downsides to this approach. For one, PyForm could not browse any

instance object unless it inherits from the record wrapper class or is wrapped up in one automatically by a

Table interface class on fetches and stores. For another, Table also has some additional interfaces not

provided by shelves, which we have to code elsewhere. This scheme might also preclude use of indexing

overload methods in the record class itself, though the GUI itself does not support such operations anyhow.

Most significantly, this model would not transparently handle other use cases, such as string-based records.

Cases requiring conversion with eval and str, for instance, would not fit the new model at all—DBM

files that map whole records to strings might require complex special case logic to handle field-at-a-time

requests or fall back to converting from and to dictionaries on fetches and stores, as is currently done.

Because of such exceptions, we would probably wind up with a Table wrapper anyhow, unless we limit

the GUI’s use cases. Generating a new empty record just by itself varies so much per record kind that we

need a class hierarchy to customize the operation. In the end, it may be easier to use dictionaries in all cases

and convert from that where needed, as PyForm currently does.

In other words, there is room for improvement if you care to experiment. On the other hand, extensions in

this domain are somewhat open-ended, so we’ll leave them as suggested exercises. PyForm was designed

to view mappings of mappings and was never meant to be a general Python object viewer.

But as a simple GUI for tables of persistent objects, it meets its design goals as planned. Python’s shelves

and classes make such systems both easy to code and powerful to use. Complex data can be stored and

fetched in a single step, as well as augmented with methods that provide dynamic record behavior. As an

added bonus, by programming such programs in Python and Tkinter, they are automatically portable

among all major GUI platforms. When you mix Python persistence and GUIs, you get a lot of features “for

free.”

