
CHAPTER 39

Decorators

In Chapter 32’s survey of class odds and ends, we met properties and static and class methods, took a
quick look at the @ decorator syntax Python offers for declaring them, and previewed decorator coding
techniques. We also met function decorators briefly while exploring the property built-in in Chap‐
ter 38, in the context of abstract superclasses in Chapter 29, and in capsule form in Chapter 19.

This chapter picks up where all this previous decorator coverage left off. Here, we’ll dig deeper into the
mechanics of decorators and study more ways to code new decorators ourselves with tools like argu‐
ments and nesting. As we’ll find, other concepts we studied earlier—especially state retention—show up
regularly in decorators.

This is a somewhat advanced topic, and decorator construction tends to be of more interest to tool
builders than to application programmers. Still, given that decorators are becoming increasingly com‐
mon in popular Python frameworks, a basic understanding can help demystify their role, even if you’re
just a decorator user.

Besides covering decorator construction details, this chapter serves as a more realistic case study of
Python in action. Because its examples grow larger than many of the others we’ve seen in this book,
they better illustrate how code comes together into more complete systems and tools. As an extra perk,
some of the code we’ll write here may be used as general-purpose tools in your day-to-day programs.

What’s a Decorator?
Simply put, decoration is a way to specify management or augmentation code for functions and classes.
Decorators themselves take the form of callable objects (e.g., functions) that process other callable
objects. As suggested earlier in this book, Python decorators come in two related flavors:

• Function decorators, added first, do name rebinding at function definition time, providing a layer
of logic that can manage functions and methods or later calls to them.

• Class decorators, added later, do name rebinding at class definition time, providing a layer of logic
that can manage classes or the instances created by later calls to them.

In short, decorators provide a way to insert automatically run code at the close of function and class
definition statements—at the end of a def for function decorators and at the end of a class for class
decorators. Such code can play a variety of roles, as described in the following sections.
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Managing Calls and Instances
In typical use, this automatically run code may be used to augment calls to functions and classes. It
arranges this by installing wrapper (a.k.a. proxy) objects to be invoked later:

Call proxies
Function decorators install wrapper objects to intercept later function calls and process them as
needed, usually passing the call on to the original function to run the managed action.

Interface proxies
Class decorators install wrapper objects to intercept later instance-creation calls and process them
as required, usually passing the call on to the original class to create a managed instance.

Decorators achieve these effects by automatically rebinding function and class names to other callables
at the end of def and class statements. When later invoked, these callables can perform tasks such as
tracing and timing function calls, managing access to class instance attributes, and so on.

Managing Functions and Classes
Although most examples in this chapter deal with using wrappers to intercept later calls to functions
and classes, this is not the only way decorators can be used:

Function managers
Function decorators can also be used to manage function objects instead of or in addition to later
calls to them—to register a function to an API, for instance. Our primary focus here, though, will
be on their more commonly used call-wrapper application.

Class managers
Class decorators can also be used to manage class objects directly, instead of or in addition to
instance-creation calls—to augment a class with new methods or data, for example. Because this
role intersects strongly with that of metaclasses, we’ll explore additional decorator use cases in the
next chapter. As detailed there, both tools run at the end of the class creation process, but class
decorators often offer a lighter-weight solution.

In other words, function decorators can be used to manage both function calls and function objects,
and class decorators can be used to manage both class instances and classes themselves. By returning
the decorated object itself instead of a wrapper, decorators become a simple post-creation step for func‐
tions and classes.

Regardless of the role they play, decorators provide a convenient and explicit way to code tools useful
both during program development and in live production systems.

Using and Defining Decorators
Depending on your job description, you might encounter decorators as a user or a provider. As we’ve
seen, Python itself comes with built-in decorators that have specialized roles—static and class method
declaration, property creation, and more. In addition, many popular Python toolkits include decorators
to perform tasks such as managing database or user-interface logic. In such cases, we can get by without
knowing how the decorators are coded.
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For more general tasks, programmers can code arbitrary decorators of their own. For example, function
decorators may be used to augment functions with code that adds call tracing or logging, caches call
results, performs argument validity testing during debugging, times calls made to functions for
optimization, and so on. Any behavior you can imagine adding to—really, wrapping around—a func‐
tion call is a candidate for custom function decorators.

On the other hand, function decorators are designed to augment only a specific function or method
call, not an entire object interface. Class decorators fill the latter role better—because they can intercept
instance-creation calls, they can be used to implement arbitrary object interface augmentation or man‐
agement tasks. For example, custom class decorators can trace, validate, or otherwise augment every
attribute reference made for an object. They can also be used to implement proxy objects, singleton
classes, and other common coding patterns. In fact, you’ll find that many class decorators are a prime
application of the delegation coding pattern we met in Chapter 31.

Why Decorators?
Like many advanced Python tools, decorators are never required from a purely technical perspective:
we can often implement their functionality instead using simple helper function calls or other tech‐
niques. And at a base level, we can always manually code the name rebinding that decorators perform
automatically.

That said, decorators provide an explicit syntax for such tasks, which makes intent clearer, can mini‐
mize augmentation code redundancy, and may help ensure correct API usage:

• Decorators have a very explicit syntax, which makes them easier to spot than helper function calls
that may be arbitrarily far removed from the subject functions or classes.

• Decorators are applied once when the subject function or class is defined; it’s not necessary to add
extra code at every call to the class or function, which may have to be changed in the future.

• Because of both of the prior points, decorators make it less likely that a user of an API will forget to
augment a function or class according to API requirements.

In other words, beyond their technical model, decorators offer some advantages in terms of both code
maintenance and consistency. Moreover, as structuring tools, decorators naturally foster encapsulation
of code, which reduces redundancy and makes future changes easier.

Like most tools, decorators have some potential drawbacks, too—when they insert wrapper logic, they
can alter the types of the decorated objects, and they may incur extra calls when used as call or interface
proxies. On the other hand, the same considerations apply to any technique that adds wrapping logic to
objects.

We’ll explore these trade-offs in the context of real code later in this chapter. Although the choice to use
decorators is ultimately subjective, their advantages are compelling enough to have escalated them to
common practice in the Python world. To help you decide for yourself, let’s turn to the details.
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Decorators Versus Macros
Python’s decorators bear similarities to what some call aspect-oriented programming in other lan‐
guages—code inserted to run automatically before or after a function call runs. Their syntax also
very closely resembles (and is likely borrowed from) Java’s annotations, though Python’s model may
be considered more flexible and general.

Some liken decorators to macros too, but this isn’t entirely apt and can be misleading. Macros, like
C’s #define preprocessor directive, are associated with textual replacement and expansion and
designed for generating code. By contrast, Python’s decorators are a runtime operation based upon
name rebinding, callable objects, and often, proxies. While the two may have use cases that some‐
times overlap, decorators and macros are fundamentally different in scope, implementation, and
coding patterns. Comparing the two seems akin to comparing Python’s import with a C #include,
which similarly confuses a runtime object-based operation with text insertion.

Of course, the term macro has also been diluted over time—to some, it now can also refer to any
canned series of steps or procedure—and users of other languages might find the analogy to deco‐
rators useful anyhow. But they should also keep in mind that decorators are about callable objects
managing callable objects, not text expansion. Python tends to be best understood and used in
terms of Python idioms.

The Basics
Let’s get started with a first-pass look at decoration behavior from an abstract perspective. We’ll write
real and more substantial code soon, but since most of the magic of decorators boils down to an auto‐
matic rebinding operation, it’s important to understand this mapping first—for both functions and
classes.

Function Decorator Basics
As previewed earlier in this book, function decorators are largely just syntactic “sugar” that runs one
function through another at the end of a def statement and rebinds the original function name to the
result.

Usage
A function decorator is a sort of runtime declaration about the function whose definition follows. The 
decorator is coded on a line just before the def statement that defines a function or method, and it con‐
sists of the @ symbol followed by a reference to a metafunction—a function (or other callable object)
that manages another function. As of Python 3.9, the code after the @ can be any expression returning a
metafunction, but it’s usually a simple name.

In terms of code, function decorators automatically map the following syntax:
@decorator              # Decorate function
def F(arg):
    …

F(99)                   # Call function
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into this equivalent form, where decorator is a one-argument callable object that returns a callable
object with the same number of arguments as F, if not F itself:

def F(arg):
    …
F = decorator(F)        # Rebind function name to decorator result

F(99)                   # Essentially calls decorator(F)(99)

This automatic name rebinding works on any def statement, whether it’s for a simple function or a
method within a class. When the function F is later called, it’s actually calling the object returned by the
decorator, which may be either another object that implements required wrapping logic or the original
function itself.

In other words, decoration essentially maps the first of the following into the second—though the deco‐
rator is really run only once, at decoration time:

func(6, 7)
decorator(func)(6, 7)

This automatic name rebinding accounts for the static-method and property decoration syntax we met
earlier in the book:

class C:
    @staticmethod
    def meth(…): …            # meth = staticmethod(meth)

class C:
    @property
    def name(self): …         # name = property(name)

In both cases, the method name is rebound to the result of a built-in function decorator at the end of
the def statement. Calling the original name later invokes whatever object the decorator returns. In
these specific cases, the original names are rebound to a static-method router and property descriptor,
but the process is much more general than this—as the next section explains.

Implementation
A decorator itself is a callable that returns a callable. That is, it returns the object to be called later when
the decorated function is invoked through its original name—either a wrapper object to intercept later
calls or the original function augmented in some way. In fact, decorators can be any type of callable and
return any type of callable: any combination of functions and classes may be used, though some are
better suited to certain contexts.

For example, to tap into the decoration protocol in order to manage a function just after it is created,
we might code a decorator of this form:

def decorator(F):
    # Process function F here
    return F

@decorator
def func(): …                 # func = decorator(func)

Because the original decorated function is assigned back to its name, this simply adds a post-creation
step to function definition. Such a structure might be used to register a function to an API, initialize
function attributes, and so on.
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In more typical use, to insert logic that intercepts later calls to a function, we might code a decorator to
return a different object than the original function—a proxy for later calls:

def decorator(F):
    # Save or use function F
    # Return a different callable: nested def, class instance with __call__, etc.

@decorator
def func(): …                 # func = decorator(func)

This decorator is invoked at decoration time, and the callable it returns is invoked when the original
function name is later called. The decorator itself receives the decorated function; the callable returned
receives whatever arguments are later passed to the decorated function’s name. When coded properly,
this works the same for class-level methods: the implied instance object simply shows up in the first
argument of the returned callable.

In skeleton terms, here’s one common coding pattern that captures this idea—the decorator returns a
wrapper that retains the original function in an enclosing scope:

def decorator(F):                     # On @ decoration
    def wrapper(*args):               # On wrapped function call
        # Use F and args
        # F(*args) calls original function
    return wrapper

@decorator                            # func = decorator(func)
def func(x, y):                       # func is passed to decorator's F
    …

func(6, 7)                            # 6, 7 are passed to wrapper's *args

When the name func is later called, it really invokes the wrapper function returned by decorator; the
wrapper function can then run the original func because it is still available in an enclosing scope. When
coded this way, each decorated function produces a new scope to retain state.

To do the same with classes, we can overload the call operation and use instance attributes instead of
enclosing scopes:

class decorator:
    def __init__(self, func):         # On @ decoration
        self.func = func
    def __call__(self, *args):        # On wrapped function call
        # Use self.func and args
        # self.func(*args) calls original function

@decorator
def func(x, y):                       # func = decorator(func)
    …                                 # func is passed to __init__

func(6, 7)                            # 6, 7 are passed to __call__'s *args

When the name func is later called now, it really invokes the __call__ operator-overloading method of
the instance created by decorator; the __call__ method can then run the original func because it is
still available in an instance attribute. When coded this way, each decorated function produces a new
instance to retain state.
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Supporting method decoration
One subtle point about the prior class-based coding is that while it works to intercept simple function
calls, it does not quite work when applied to class-level method functions:

class decorator:
    def __init__(self, func):           # func is method without instance
        self.func = func
    def __call__(self, *args):          # self is decorator instance
        # self.func(*args) fails!       # C instance not in args!

class C:
    @decorator
    def method(self, x, y):             # method = decorator(method)
        …                               # Rebound to decorator instance

When coded this way, the decorated method is rebound to an instance of the decorator class instead of a
simple function.

The problem with this is that the self in the decorator’s __call__ receives the decorator class instance
when the method is later run, and the instance of class C is never included in *args. This makes it
impossible to dispatch the call to the original method—the decorator object retains the original method
function, but it has no instance to pass to it.

To support both functions and methods, the nested function alternative works better:
def decorator(F):                       # F is func or method without instance
    def wrapper(*args):                 # class instance in args[0] for method
        # F(*args) runs func or method
    return wrapper

@decorator
def func(x, y):                         # func = decorator(func)
    …
func(6, 7)                              # Really calls wrapper(6, 7)

class C:
    @decorator
    def method(self, x, y):             # method = decorator(method)
        …                               # Rebound to simple function

X = C()
X.method(6, 7)                          # Really calls wrapper(X, 6, 7)

When coded this way, wrapper receives the C class instance in its first argument, so it can dispatch to
the original method and access state information.

Technically, this nested-function version works because Python creates a bound method object and thus
passes the subject class instance to the self argument only when a method attribute references a simple
function; when it references an instance of a callable class instead, the callable class’s instance is passed
to self to give the callable class access to its own state information. You’ll see how this subtle difference
can matter in more realistic examples later in this chapter.

Also note that nested functions are perhaps the most straightforward way to support decoration of both
functions and methods, but not necessarily the only way. The prior chapter’s descriptors, for example,
receive both the descriptor-class and subject-class instance when called. Though more complex, later in
this chapter you’ll see how this tool can be leveraged in this context as well.
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Class Decorator Basics
Function decorators proved so useful that the model was extended to allow class decoration. They were
initially resisted because of role overlap with the next chapter’s metaclasses; in the end, though, they
were adopted because they provide a simpler way to achieve many of the same goals.

Class decorators are strongly related to function decorators; in fact, they use the same syntax and very
similar coding patterns. Rather than wrapping individual functions or methods, though, class decora‐
tors are a way to manage classes or wrap up instance-creation calls with extra logic that manages or
augments instances created from a class. In the latter role, they may manage full object interfaces
instead of a single callable object.

Usage
Syntactically, class decorators appear just before class statements, in the same way that function deco‐
rators appear just before def statements. In symbolic terms, for a decorator that must be a one-
argument callable that returns a callable, the class decorator syntax:

@decorator                 # Decorate class
class C:
    …

x = C(99)                  # Make an instance

is equivalent to the following—the class is automatically passed to the decorator function, and the deco‐
rator’s result is assigned back to the class name:

class C:
    …
C = decorator(C)           # Rebind class name to decorator result

x = C(99)                  # Essentially calls decorator(C)(99)

The net effect is that calling the class name later to create an instance winds up triggering the callable
returned by the decorator, which may or may not call the original class itself.

Implementation
New class decorators are coded with many of the same techniques used for function decorators, though
some may involve two levels of augmentation—to manage both instance-construction calls as well as
instance-interface access. Because a class decorator is also a callable that returns a callable, most combi‐
nations of functions and classes suffice.

However it’s coded, the decorator’s result is what runs when an instance is later created. For example, to
simply manage a class just after it is created, return the original class itself:

def decorator(C):
    # Process class C here
    return C

@decorator
class C: …                                      # C = decorator(C)

To instead insert a wrapper layer that intercepts later instance-creation calls, return a different callable
object:
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def decorator(C):
    # Save or use class C
    # Return a different callable: nested def, class instance with __call__, etc.

@decorator
class C: …                                      # C = decorator(C)

The callable returned by such a class decorator typically creates and returns a new instance of the origi‐
nal class, augmented in some way to manage its interface. For example, the following inserts an object
that intercepts undefined attributes of a class instance:

def decorator(cls):                             # On @ decoration
    class Wrapper:
        def __init__(self, *args):              # On instance creation
            self.wrapped = cls(*args)
        def __getattr__(self, name):            # On attribute fetch
            return getattr(self.wrapped, name)
    return Wrapper

@decorator
class C:                             # C = decorator(C)
    def __init__(self, x, y):        # Run by Wrapper.__init__
        self.attr = 'hack'

x = C(6, 7)                          # Really calls Wrapper(6, 7)
print(x.attr)                        # Runs Wrapper.__getattr__, prints "hack"

In this example, the decorator rebinds the class name to another class, which retains the original class
in an enclosing scope and creates and embeds an instance of the original class when it’s called. When an
attribute is later fetched from the instance, it is intercepted by the wrapper’s __getattr__ and delegated
to the embedded instance of the original class. Moreover, each decorated class creates a new scope,
which remembers the original class. We’ll flesh out this example into some more useful code later in
this chapter.

Like function decorators, class decorators are commonly coded as either closure (a.k.a. “factory”) func‐
tions that create and return callables, classes that use __init__ or __call__ methods to intercept call
operations, or some combination thereof. Closure functions typically retain state in enclosing-scope
references, and classes retain state in attributes.

Supporting multiple instances
As for function decorators, some callable-type combinations work better for class decorators than oth‐
ers. Consider the following invalid alternative to the class decorator of the prior example:

class Decorator:
    def __init__(self, C):                    # On @ decoration
        self.C = C
    def __call__(self, *args):                # On instance creation
        self.wrapped = self.C(*args)
        return self
    def __getattr__(self, attrname):          # On attribute fetch
        return getattr(self.wrapped, attrname)

@Decorator
class C: …                                    # C = Decorator(C)

x = C()
y = C()                                       # Overwrites x!
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This code handles multiple decorated classes (each makes a new Decorator instance) and will intercept
instance-creation calls (each runs __call__). Unlike the prior version, however, this version fails to
handle multiple instances of a given class—each instance-creation call overwrites the prior saved
instance. The prior version does support multiple instances because each instance-creation call makes a
new independent wrapper object. More generally, either of the following patterns supports multiple
wrapped instances:

def decorator(C):                             # On @ decoration
    class Wrapper:
        def __init__(self, *args):            # On instance creation: new Wrapper
            self.wrapped = C(*args)           # Embed instance in instance
    return Wrapper

class Wrapper: …
def decorator(C):                             # On @ decoration
    def onCall(*args):                        # On instance creation: new Wrapper
        return Wrapper(C(*args))              # Embed instance in instance
    return onCall

We’ll study this phenomenon in a more realistic context later in the chapter too; in practice, though, we
must be careful to combine callable types properly to support our intent and choose state policies
wisely.

Decorator Nesting
Sometimes, one decorator isn’t enough. For instance, suppose you’ve coded two function decorators to
be used during development—one to test argument types before function calls and another to test
return value types after function calls. You can use either independently, but what to do if you want to
employ both on a single function? What you really need is a way to nest the two, such that the result of
one decorator is the function decorated by the other. It’s irrelevant which is nested, as long as both steps
run on later calls.

To support multiple nested steps of augmentation this way, decorator syntax allows you to add multiple
layers of wrapper logic to a decorated function or method. When this feature is used, each decorator
must appear on a line of its own. Decorator syntax of this form:

@A
@B
@C
def f(…):
    …

runs the same as the following:
def f(…):
    …
f = A(B(C(f)))

Here, the original function is passed through three different decorators, and the resulting callable object
is assigned back to the original name. Each decorator processes the result of the prior, which may be the
original function or an inserted wrapper.

If all the decorators insert wrappers, the net effect stacks them: when the original function name is
called, three different layers of wrapping object logic will be invoked to augment the original function in
three different ways. The last decorator listed is the first applied and, thus, the most deeply nested when
the original function name is later called.
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Just as for functions, multiple class decorators result in multiple nested function calls and possibly mul‐
tiple levels and steps of wrapper logic around instance-creation calls. For example, the following code:

@hack
@code
class C:
    …

X = C()

is equivalent to the following:
class C:
    …
C = hack(code(C))

X = C()

Again, each decorator is free to return either the original class or an inserted wrapper object. With
wrappers, when an instance of the original C class is finally requested, the call is redirected to the wrap‐
ping layer objects provided by both the hack and code decorators, which may have arbitrarily different
roles—they might trace and validate attribute access for example, and both steps would be run in turn
on later requests.

For instance, the following do-nothing decorators simply return the decorated function:
def d1(F): return F
def d2(F): return F
def d3(F): return F

@d1
@d2
@d3
def func():               # func = d1(d2(d3(func)))
    print('hack')

func()                    # Prints "hack"

The same syntax works on classes, as do these same do-nothing decorators.

When decorators insert wrapper function objects, though, they may augment the original function
when called—the following concatenates to its result in the decorator layers, as it runs the layers from
inner to outer:

def d1(F): return lambda: 'X' + F()
def d2(F): return lambda: 'Y' + F()
def d3(F): return lambda: 'Z' + F()

@d1
@d2
@d3
def func():               # func = d1(d2(d3(func)))
    return 'hack'

print(func())             # Prints "XYZhack"

We use lambda functions to implement wrapper layers here (each retains the wrapped function F in an
enclosing scope); in practice, wrappers can take the form of functions, callable classes, and more. When
designed well, decorator nesting allows us to combine augmentation steps in a wide variety of ways.
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Decorator Arguments
Both function and class decorators can also seem to take arguments. Really, though, the role of these
arguments is simpler than it may seem: decorator arguments are passed to a callable that returns the
decorator—which in turn returns a callable. By nature, this usually sets up multiple levels of state reten‐
tion. The following, for instance:

@decorator(A, B)
def F(arg):
    …

F(99)

is automatically mapped into this equivalent form, where decorator is a callable that returns the actual
decorator. The returned decorator in turn returns the callable run later for calls to the original function
name:

def F(arg):
    …
F = decorator(A, B)(F)    # Rebind F to result of decorator's return value

F(99)                     # Essentially calls decorator(A, B)(F)(99)

Decorator arguments are resolved before decoration ever occurs, and they are usually used to retain
state information for use in later calls. The decorator function in this example, for instance, might take
a form like the following:

def decorator(A, B):
    # Save or use A, B
    def actualDecorator(F):
        # Save or use function F
        # Return a callable: nested def, class instance with __call__, etc.
        return callable
    return actualDecorator

The outer function in this structure generally saves the decorator arguments away as state information
for use in the actual decorator, the callable it returns, or both. This code snippet retains the state infor‐
mation argument in enclosing function scope references, but class attributes would work as well.

In other words, decorator arguments often imply three levels of callables: a callable to accept decorator
arguments, which returns a callable to serve as decorator, which returns a callable to handle calls to the
original function or class. Each of the three levels may be a function or class and may retain state in the
form of scopes or class attributes.

Decorator arguments can be used to provide attribute initialization values, call-trace message labels,
attribute names to be validated, and much more—any sort of configuration parameter for objects or
their proxies is a candidate. We’ll code concrete examples of decorator arguments later in this chapter.

Decorators Manage Functions and Classes, Too
To wrap up, although much of the rest of this chapter focuses on wrapping later calls to functions and
classes, it’s important to remember that the decorator mechanism is more general than this—it is simply
a protocol for passing functions and classes through any callable immediately after they are created. As
such, it can also be used to invoke arbitrary post-creation processing:
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def decorator(O):
    # Augment function or class O
    return O

@decorator
def F(): …                 # F = decorator(F)

@decorator
class C: …                 # C = decorator(C)

If we return the original decorated object this way instead of a proxy, we can manage functions and
classes themselves rather than later calls to them. Such decorators might be used to register callable
objects to an API, initialize attributes in functions or classes when they are created, and so on. Decora‐
tor roles are limited only by your imagination.

Coding Function Decorators
On to the code. In the rest of this chapter, we are going to study working examples that demonstrate the
decorator concepts we just surveyed. This section presents a handful of function decorators in complete
form, and the next shows tangible class decorators in action. Following that, we’ll close out with two
larger case studies that showcase typical decorator roles and code full-scale implementations of class
privacy and argument range tests.

Tracing Function Calls
To get started, let’s revive the call tracer example we met in Chapter 32. Example 39-1 defines and
applies a function decorator that counts the number of calls made to the decorated function and prints
a trace message for each call.

Example 39-1. decorator1.py
class tracer:
    def __init__(self, func):         # On @ decoration: save original func
        self.calls = 0
        self.func = func
    def __call__(self, *args):        # On later calls: run original func
        self.calls += 1
        print(f'call {self.calls} to {self.func.__name__}')
        self.func(*args)

@tracer
def hack(a, b, c):           # hack = tracer(hack)
    print(a + b + c)         # Wraps hack in a decorator object

Notice how each function decorated with this class will create a new instance with its own saved func‐
tion object and calls counter. Also, observe how the *args argument syntax is used to pack and unpack
arbitrarily many passed-in arguments. This generality enables this decorator to be used to wrap any
function with any number of positional arguments; this version doesn’t yet work on keyword argu‐
ments or class-level methods and doesn’t return results, but we’ll fix these shortcomings later in this
section.
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Now, if we import this module’s function and test it interactively in a REPL, we get the following sort of
behavior—each call generates a trace message initially because the decorator class intercepts it:

$ python3
>>> from decorator1 import hack

>>> hack(1, 2, 3)            # Really calls the tracer wrapper object
call 1 to hack
6

>>> hack('a', 'b', 'c')      # Invokes __call__ in class
call 2 to hack
abc

>>> hack.calls               # Number calls in wrapper state information
2
>>> hack
<decorator1.tracer object at 0x10cafc680>

When run, the tracer class saves away the decorated function and intercepts later calls to it in order to
add a layer of logic that counts and prints each call. Notice how the total number of calls shows up as an
attribute of the decorated function—hack is really an instance of the tracer class when decorated, a
finding that may have ramifications for programs that do type checking, but is generally benign.

For function calls, the @ decoration syntax can be more convenient than modifying each call to account
for the extra logic level, and it avoids accidentally calling the original function directly. Consider a non‐
decorator equivalent such as the following:

>>> calls = 0
>>> def tracer(func, *args):
        global calls
        calls += 1
        print(f'call {calls} to {func.__name__}')
        func(*args)
 
>>> def hack(a, b, c):       # Nondecorated function
        print(a, b, c)
 
>>> hack(1, 2, 3)            # Normal nontraced call: accidental?
1 2 3
>>> 
>>> tracer(hack, 1, 2, 3)    # Special traced call without decorators
call 1 to hack
1 2 3

This alternative can be used on any function without the special @ syntax, but unlike the decorator ver‐
sion, it requires extra syntax at every place where the function is called in your code. Furthermore, its
intent may not be as obvious, and it does not ensure that the extra layer will be invoked for normal calls.
Although decorators are never required (we can always rebind names manually), they are often the
most convenient and uniform augmentation option.

Decorator State Retention Options
The preceding example raises an important point. Decorators have a variety of options for retaining
state information provided at decoration time to be used during later calls to decorated objects. They
generally need to support multiple decorated objects and multiple later calls, but there are several ways
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to implement these goals: instance attributes, global variables, nonlocal closure variables, and function
attributes can all be used for retaining state.

This topic parallels the initial state coverage in Chapter 17 but can be fleshed out here with class details,
and it is so endemic to decorators that it qualifies as a prerequisite. This topic also applies to both func‐
tion and class decorators, but let’s explore it in the narrower function-decorator realm.

State with class-instance attributes
As an opening act in the state-retention show, Example 39-2 codes an augmented version of the prior
example, which adds support for keyword arguments with ** syntax and returns the wrapped function’s
result to support more use cases (for nonlinear readers, we first studied keyword arguments in
Chapter 18).

Example 39-2. decorator_state_classes.py
class tracer:                                # State via instance attributes
    def __init__(self, func):                # On @ decorator
        self.calls = 0                       # Save func for later call
        self.func  = func
    def __call__(self, *args, **kwargs):     # On call to original function
        self.calls += 1
        print(f'call {self.calls} to {self.func.__name__}')
        return self.func(*args, **kwargs)

@tracer
def hack(a, b, c):           # Same as: hack = tracer(hack)
    print(a + b + c)         # Triggers tracer.__init__

@tracer
def code(x, y):              # Same as: code = tracer(code)
    print(x ** y)            # Wraps code in a tracer object

if __name__ == '__main__':
    hack(1, 2, 3)            # Really calls tracer instance: runs tracer.__call__
    hack(a=4, b=5, c=6)      # hack is an instance attribute

    code(4, 2)               # Really calls tracer instance: self.func is code
    code(2, y=16)            # self.calls is per-decoration here

Like the original, this uses class instance attributes to save state explicitly. Both the wrapped function
and the calls counter are per-instance information—each decoration gets its own copy. When run as a
script, the output of this version is as follows; notice how the hack and code functions each have their
own calls counter because each decoration creates a new class instance:

$ python3 decorator_state_classes.py
call 1 to hack
6
call 2 to hack
15
call 1 to code
16
call 2 to code
65536

While useful for decorating functions, this coding scheme still has issues when applied to methods—a
shortcoming we’ll address in a later revision.
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State with global variables
For simpler tasks that don’t require per-function data, moving state variables out to the global scope, as
illustrated by Example 39-3, might suffice. This code still uses an enclosing-scope reference for the orig‐
inal decorated function but pushes the call counter out to the enclosing module.

Example 39-3. decorator_state_globals.py
calls = 0
def tracer(func):                         # State via enclosing scope and global
    def wrapper(*args, **kwargs):         # Instead of class attributes
        global calls                      # calls is global, not per-function
        calls += 1
        print(f'call {calls} to {func.__name__}')
        return func(*args, **kwargs)
    return wrapper

@tracer
def hack(a, b, c):           # Same as: hack = tracer(hack)
    print(a + b + c)

@tracer
def code(x, y):              # Same as: code = tracer(code)
    print(x ** y)

if __name__ == '__main__':
    hack(1, 2, 3)            # Really calls wrapper, assigned to hack
    hack(a=4, b=5, c=6)      # wrapper calls hack

    code(4, 2)               # Really calls wrapper, assigned to code
    code(2, y=16)            # Global calls is not per-decoration here!

Unfortunately, moving the counter out to the common global scope to allow it to be changed like this
also means that it will be shared by every wrapped function. Unlike class instance attributes, global
counters are cross-program, not per-function—the counter is incremented for any traced function call.
You can tell the difference if you compare this version’s output with the prior version’s—the single,
shared global call counter is incorrectly updated by calls to every decorated function:

$ python3 decorator_state_globals.py
call 1 to hack
6
call 2 to hack
15
call 3 to code
16
call 4 to code
65536

State with enclosing-scope nonlocals
Shared global state may be what we want in some cases. If we really want a per-function counter, though,
we can either use classes as before or make use of closure functions and the nonlocal statement
described in Chapter 17. Because this statement allows enclosing function scope variables to be
changed, they can serve as per-decoration, changeable data. Example 39-4 demos the basics of this
scheme.
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Example 39-4. decorator_state_nonlocals.py
def tracer(func):                        # State via enclosing scope and nonlocal
    calls = 0                            # Instead of class attrs or global
    def wrapper(*args, **kwargs):        # calls is per-function, not global
        nonlocal calls
        calls += 1
        print(f'call {calls} to {func.__name__}')
        return func(*args, **kwargs)
    return wrapper

@tracer
def hack(a, b, c):           # Same as: hack = tracer(hack)
    print(a + b + c)

@tracer
def code(x, y):              # Same as: code = tracer(code)
    print(x ** y)

if __name__ == '__main__':
    hack(1, 2, 3)            # Really calls wrapper, bound to hack
    hack(a=4, b=5, c=6)      # wrapper calls hack

    code(4, 2)               # Really calls wrapper, bound to code
    code(2, y=16)            # Nonlocal calls _is_ per-decoration here

Now, because enclosing-scope variables are not cross-program globals, each wrapped function gets its
own counter again, just as for classes and attributes. Here’s the new output:

$ python3 decorator_state_nonlocals.py
call 1 to hack
6
call 2 to hack
15
call 1 to code
16
call 2 to code
65536

State with function attributes
Finally, you can also avoid globals and classes by making use of function attributes for some changeable
state instead of nonlocal. As we saw in Chapters 17 and 19, we can attach arbitrary attributes to func‐
tions by assignment, with func.attr=value. Because a factory function makes a new function on each
call, its attributes become per-call state. Moreover, you need to use this technique only for state vari‐
ables that must change; enclosing-scope references are still retained and work normally.

To demo, Example 39-5 simply uses wrapper.calls for state. It works the same as the preceding
nonlocal version because the counter is again per-decorated-function.

Example 39-5. decorator_state_attributes.py
def tracer(func):                        # State via enclosing scope and func attr
    def wrapper(*args, **kwargs):        # calls is per-function, not global
        wrapper.calls += 1
        print(f'call {wrapper.calls} to {func.__name__}')
        return func(*args, **kwargs)
    wrapper.calls = 0
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    return wrapper

@tracer
def hack(a, b, c):           # Same as: hack = tracer(hack)
    print(a + b + c)

@tracer
def code(x, y):              # Same as: code = tracer(code)
    print(x ** y)

if __name__ == '__main__':
    hack(1, 2, 3)            # Really calls wrapper, assigned to hack
    hack(a=4, b=5, c=6)      # wrapper calls hack

    code(4, 2)               # Really calls wrapper, assigned to code
    code(2, y=16)            # wrapper.calls _is_ per-decoration here

As we learned in Chapter 17, this works only because the name wrapper is retained in the enclosing
tracer function’s scope. When we later increment wrapper.calls, we are not changing the name
wrapper itself, so no nonlocal declaration is required:

$ python3 decorator_state_attributes.py
…same output as prior version…

This scheme was almost relegated to a footnote because it may be more obscure than nonlocal and
might be better saved for cases where other schemes don’t help. However, function attributes also have a
substantial advantage: like class instances, they allow access to the saved state from outside the decora‐
tor’s code; nonlocals can only be seen inside the nested function itself, but function attributes have
wider visibility.

We will employ function attributes again in an answer to one of the end-of-chapter questions, where
their visibility outside callables becomes an asset. As changeable state associated with a context of use,
though, they are equivalent to enclosing-scope nonlocals. As usual, choosing from multiple tools is an
inherent part of the programming task.

Because decorators often imply multiple levels of callables, you can combine functions with enclosing
scopes, classes with attributes, and function attributes to achieve a variety of coding structures. As you’ll
see later, though, this sometimes may be subtler than you expect—each decorated function should have
its own state, and each decorated class may require state both for itself and for each generated instance.

In fact, as the next section will explain in more detail, if we want to apply function decorators to class-
level methods, too, we also have to be careful about the distinction Python makes between decorators
based on callable class instance objects and decorators based on nested functions.

Class Pitfall: Decorating Methods
When the preceding section’s class-based tracer function decorator, Example 39-2, was initially coded,
it was assumed that it could also be applied to any method—decorated methods should work the same,
but the automatic self instance argument would simply be included at the front of *args. The only real
downside to this assumption is that it is completely wrong, though the reasons for the failure are far
from obvious.

In short, when applied to a class’s method, this version of the tracer fails because self is the instance
of the decorator class and the instance of the decorated subject class is not included in *args at all.
Here’s a relisting of the class in question to avoid page flipping:
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class tracer:                                # State via instance attributes
    def __init__(self, func):                # On @ decorator
        self.calls = 0                       # Save func for later call
        self.func  = func
    def __call__(self, *args, **kwargs):     # On call to original function
        self.calls += 1
        print(f'call {self.calls} to {self.func.__name__}')
        return self.func(*args, **kwargs)

This phenomenon was introduced abstractly earlier in this chapter, but now we can see it in the context
of working code. Example 39-2’s class-based decorator works as advertised earlier for plain functions
(copy/pasters: don’t copy the initial “...” REPL prompts included in this chapter to preserve indentation
after decorator lines):

>>> from decorator_state_classes import tracer
>>> @tracer
... def hack(a, b, c):                       # hack = tracer(hack)
        print(a + b + c)                     # Triggers tracer.__init__
 
>>> hack(1, 2, 3)                            # Runs tracer.__call__
call 1 to hack
6
>>> hack(a=4, b=5, c=6)                      # hack saved in an instance attribute
call 2 to hack
15

However, decoration of class-level methods fails (more lucid sequential readers might recognize this as
an adaptation of our Person class resurrected from the object-oriented tutorial in Chapter 28):

>>> class Person:
        def __init__(self, name, pay):
            self.name = name
            self.pay  = pay
        @tracer
        def giveRaise(self, percent):        # giveRaise = tracer(giveRaise)
            self.pay *= (1.0 + percent)
 
>>> pat = Person('Pat Jones', 50_000)        # tracer remembers method funcs
>>> pat.giveRaise(.10)                       # Runs tracer.__call__(???, .10)
call 1 to giveRaise
TypeError: Person.giveRaise() missing 1 required positional argument: 'percent'

The root of the problem here is in the self argument of the tracer class’s __call__ method—is it a
tracer instance or a Person instance? We ultimately need both as it’s coded: the tracer for decorator
state, and the Person for routing on to the original method. Really, self must be the tracer object to
provide access to tracer’s state information (its calls and func); this is true whether decorating a sim‐
ple function or a method.

Unfortunately, when our decorated method name is rebound to a class instance object with a __call__,
Python passes only the tracer instance to self; it doesn’t pass along the Person subject in the argu‐
ments list at all. Moreover, because the tracer knows nothing about the Person instance we are trying
to process with method calls, there’s no way to create a bound method with an instance, and thus, no
way to correctly dispatch the call. This isn’t a bug, but it’s wildly subtle.

In the end, the prior listing winds up passing too few arguments to the decorated method, and results in
an error. Add a line to the decorator’s __call__ to print all its arguments to verify this—as you can see,
self is the tracer instance, and the Person instance is entirely absent:

Coding Function Decorators | 1049



>>> pat.giveRaise(.10)
<__main__.tracer object at 0x108a02c00> (0.10,) {}

As mentioned earlier, this happens because Python passes the implied subject instance to self when a
method name is bound to a simple function only; when it is an instance of a callable class, that class’s
instance is passed instead. That is, Python makes a bound method object containing the subject instance
only when the method is a simple function, not when it is a callable instance of another class.

Using nested functions to decorate methods
If you want your function decorators to work on both simple functions and class-level methods, the
most straightforward solution lies in using one of the other state retention solutions described earlier—
code your function decorator as nested def statements so that you don’t depend on a single self
instance argument to be both the wrapper class instance and the subject class instance.

In fact, we already have—both Examples 39-4 and 39-5 work for both functions and class methods by
using nested functions along with nonlocal variables or function attributes:

>>> from decorator_state_nonlocals import tracer       # See Example 39-4

>>> @tracer
... def hack(a, b, c):                                 # Works for functions
        print(a + b + c)
 
>>> hack(1, 2, 3)
call 1 to hack
6

>>> class Person:                                      # AND works for methods
        def __init__(self, name, pay):
            self.name = name
            self.pay  = pay
        @tracer
        def giveRaise(self, percent):                  # self included in args
            self.pay *= (1.0 + percent)                # Counter in nonlocals
 
>>> pat = Person('Pat Jones', 50_000)
>>> pat.giveRaise(.10)
call 1 to giveRaise
>>> pat.giveRaise(.10)
call 2 to giveRaise
>>> f'{pat.pay:,.2f}'
'60,500.00'

>>> from decorator_state_attributes import tracer      # See Example 39-5
…same correct results…                                 # Counter in attributes

Because decorated methods here are rebound to simple functions instead of instance objects, Python
correctly passes the Person object as the first argument, and the decorator propagates it on in the first
item of *args to the self argument of the real, decorated methods. Trace through these results and
decorators to make sure you have a handle on this model; the next section provides an alternative to it
that supports classes but is also substantially more complex.
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Using descriptors to decorate methods
Although the nested function solution illustrated in the prior section is the most straightforward way to
support decorators that apply to both functions and class-level methods, other schemes are possible.
The descriptor feature we explored in the prior chapter, for example, can help here as well.

Recall from our discussion in the prior chapter that a descriptor is normally a class attribute assigned to
an object with a __get__ method run automatically whenever that attribute is referenced and fetched:

class Descriptor:
    def __get__(self, instance, owner): …

class Subject:
    attr = Descriptor()

X = Subject()
X.attr           # Roughly runs Descriptor.__get__(Subject.attr, X, Subject)

Descriptors may also have __set__ and __del__ access methods, but we don’t need them here. More
relevant to this chapter’s topic: because the descriptor’s __get__ method receives both the descriptor
class instance and subject class instance when invoked, it’s well suited to decorating methods when we
need both the decorator’s state and the original class instance for dispatching calls. Consider the alter‐
native tracing decorator in Example 39-6, which also happens to be a descriptor when used for a class-
level method (its “…” are the same as in the prior REPL session).

Example 39-6. calltracer_desc_class.py
class tracer(object):                        # A decorator+descriptor
    def __init__(self, func):                # On @ decorator
        self.calls = 0                       # Save func for later call
        self.func  = func
    def __call__(self, *args, **kwargs):     # On call to original func/meth
        self.calls += 1
        print(f'call {self.calls} to {self.func.__name__}')
        return self.func(*args, **kwargs)
    def __get__(self, instance, owner):      # On method attribute fetch
        return wrapper(self, instance)

class wrapper:
    def __init__(self, desc, subj):          # Save both instances
        self.desc = desc                     # Route calls back to deco/desc
        self.subj = subj
    def __call__(self, *args, **kwargs):
        return self.desc(self.subj, *args, **kwargs)  # Runs tracer.__call__

@tracer
def hack(a, b, c):                           # hack = tracer(hack)
    …                                        # Uses __call__ only

class Person:
    …
    @tracer
    def giveRaise(self, percent):            # giveRaise = tracer(giveRaise)
        …                                    # Makes giveRaise a descriptor
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This works the same as the preceding nested function coding. Its operation varies by usage context:

• Decorated functions invoke only its __call__, and never invoke its __get__.
• Decorated methods invoke its __get__ first to resolve the method name fetch (on I.method); the

object returned by __get__ retains the subject class instance and is then invoked to complete the
call expression, thereby triggering the decorator’s __call__ (on ()).

For example, given the same testing code, the call to:
pat.giveRaise(.10)                           # Runs __get__ then __call__

runs tracer.__get__ first because the giveRaise attribute in the Person class has been rebound to a
descriptor by the method function decorator. The call expression then triggers the __call__ method of
the returned wrapper object, which in turn invokes tracer.__call__. In other words, decorated
method calls trigger a five-step process: tracer.__get__, which invokes wrapper.__init__, followed
by three call operations—wrapper.__call__, tracer.__call__, and finally the original wrapped
method.

The wrapper object retains both descriptor and subject instances, so it can route control back to the
original decorator/descriptor class instance. In effect, the wrapper object saves the subject class instance
available during method attribute fetch and adds it to the later call’s arguments list, which is passed to
the decorator__call__. Routing the call back to the descriptor class instance this way is required in this
application so that all calls to a wrapped method use the same calls counter state information in the
descriptor instance object.

Alternatively, we could use a nested function and enclosing-scope references to achieve the same effect
—Example 39-7 works the same as the preceding one by swapping a wrapper class and attributes for a
nested function and scope references. It requires noticeably less code but follows a similar multistep
process on each decorated method call.

Example 39-7. calltracer_desc_func.py
class tracer(object):
    def __init__(self, func):                # On @ decorator
        self.calls = 0                       # Save func for later call
        self.func  = func
    def __call__(self, *args, **kwargs):     # On call to original func
        self.calls += 1
        print(f'call {self.calls} to {self.func.__name__}')
        return self.func(*args, **kwargs)
    def __get__(self, instance, owner):                # On method fetch
        def wrapper(*args, **kwargs):                  # Retain both inst
            return self(instance, *args, **kwargs)     # Runs __call__
        return wrapper

…rest same as Example 39-6…

These two descriptor-based tracers work the same as the nested-functions version, so we’ll skip their
output here. Add print statements to their methods to trace their multistep get/call processes if it helps.
In either coding, this descriptor-based scheme is also substantially subtler than the nested-function
option, and so is probably a second choice here. To be more blunt, if its complexity doesn’t send you
screaming into the night, its performance costs probably should! Still, this may be a useful coding pat‐
tern in other contexts.
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Before moving on, it’s also worth briefly noting that we might code this descriptor-based decorator
more simply as in Example 39-8, but it would then apply only to methods, not to simple functions—an
intrinsic limitation of attribute descriptors, and just the inverse of the problem we’re trying to solve
(application to both functions and methods).

Example 39-8. calltracer_desc_fail.py
class tracer(object):                         # For methods, but not functions!
    def __init__(self, meth):                 # On @ decorator
        self.calls = 0                         
        self.meth  = meth
    def __get__(self, instance, owner):       # On method fetch
        def wrapper(*args, **kwargs):         # On method call: proxy with self+inst
            self.calls += 1
            print(f'call {self.calls} to {self.meth.__name__}')
            return self.meth(instance, *args, **kwargs)
        return wrapper

@tracer                                # OK for methods but FAILS for functions
def hack(a, b, c):                     # hack = tracer(hack)
    …                                  # No attribute fetch occurs on calls!

…rest same as Example 39-6…

In the rest of this chapter we’re going to be casual about using classes or functions to code our function
decorators, as long as they are applied only to functions. Some decorators may not require the instance
of the original class, and will still work on both functions and methods if coded as a class—something
like Python’s own staticmethod decorator, for example, wouldn’t require an instance of the subject
class (indeed, its whole point is to remove the instance from the call).

The simpler moral of this story, though, is that if you want your decorators to work on both simple
functions and methods, you’re probably better off using the nested-function coding pattern instead of a
class with call interception.

Timing Function Calls
To better sample what function decorators are capable of, let’s turn to a different use case. Our next
decorator times calls made to a decorated function—both the time for one call and the total time
among all calls. As coded in Example 39-9, the decorator is applied to two functions to compare the
speeds of list comprehensions and the map built-in.

Example 39-9. timerdeco1.py
"Caveat: timer won't work on methods as coded (see quiz solution)"
import time, sys

class timer:
    def __init__(self, func):
        self.func    = func
        self.alltime = 0
    def __call__(self, *args, **kargs):
        start   = time.perf_counter()
        result  = self.func(*args, **kargs)
        elapsed = time.perf_counter() - start
        self.alltime += elapsed
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        print(f'{self.func.__name__}: {elapsed:.5f}, {self.alltime:.5f}')
        return result

@timer
def listcomp(N):
    return [x * 2 for x in range(N)]

@timer
def mapcall(N):
    return list(map((lambda x: x * 2), range(N)))

if __name__ == '__main__':
    for func in (listcomp, mapcall):
        result = func(5)                        # Time for this call, result
        func(50_000)
        func(500_000)
        func(1_000_000)
        print(result)
        print(f'allTime = {func.alltime}\n')    # Total time for all func calls

    print('**map/comp =', round(mapcall.alltime / listcomp.alltime, 3))

When run on a macOS host by CPython 3.12, the output of this file’s self-test code is as follows—giving
for each function call the function name, time for this call, and time for all calls so far, along with the
first call’s return value, cumulative time for each function, and the map-to-comprehension time ratio at
the end:

$ python3 timerdeco1.py
listcomp: 0.00000, 0.00000
listcomp: 0.00366, 0.00366
listcomp: 0.03134, 0.03500
listcomp: 0.05213, 0.08713
[0, 2, 4, 6, 8]
allTime = 0.08712841104716063

mapcall: 0.00001, 0.00001
mapcall: 0.00396, 0.00397
mapcall: 0.04082, 0.04479
mapcall: 0.07789, 0.12268
[0, 2, 4, 6, 8]
allTime = 0.12268476499593817

**map/comp = 1.408

Times vary per Python version, test machine, and other variables, of course, and cumulative time is
available as a class instance attribute here. As usual, map calls are slower than list comprehensions when
the latter can avoid a function call (or equivalently, its requirement of function calls may make map
slower).

For comparison, see Chapter 21 for a nondecorator approach to timing iteration alternatives like these.
As a review, we saw two per-call timing techniques there, homegrown and library—here deployed to
time the 1M list comprehension case of the decorator’s test code, though incurring extra admin costs
that skew results slightly (add Chapter 21’s folder to your PYTHONPATH or sys.path, or go there to run
this):
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>>> def listcomp(N): [x * 2 for x in range(N)]

>>> import timer                                    # Chapter 21 techniques
>>> timer.total(1, listcomp, 1_000_000)
(0.08150088600814342, None)
>>> timer.bestoftotal(5, 1, listcomp, 1_000_000)
(0.059792334999656305, None)

>>> import timeit
>>> timeit.timeit(number=1, stmt=lambda: listcomp(1_000_000))
0.08125517799635418
>>> min(timeit.repeat(repeat=5, number=1, stmt=lambda: listcomp(1_000_000)))
0.06156357398140244

In this specific case, a nondecorator approach would allow the subject functions to be used with or
without timing, but it would also complicate the call signature when timing is desired—we’d need to
add code at every call instead of once at the def. Moreover, in the nondecorator scheme, there would be
no direct way to guarantee that all list builder calls in a program are routed through timer logic, short of
finding and potentially changing them all. This may make it difficult to collect cumulative data for all
calls.

In general, decorators may be preferred when functions are already deployed as part of a larger system
and may not be easily passed to analysis functions at calls. On the other hand, because decorators
charge each call to a function with augmentation logic, a nondecorator approach may be better if you
wish to augment calls more selectively. As usual, different tools serve different roles.

Adding Decorator Arguments
The timer decorator of the prior section works, but it would be nice if it were more configurable—pro‐
viding an output label and turning trace messages on and off, for instance, might be useful in a general-
purpose tool like this. Decorator arguments come in handy here: when they’re coded properly, we can
use them to specify configuration options that can vary for each decorated function. A label, for
instance, might be added as abstractly follows:

def timer(label=''):
    def decorator(func):
        def onCall(*args):        # Multilevel state retention:
            …                     # args passed to function
            func(*args)           # func retained in enclosing scope
            print(label, …)       # label retained in enclosing scope
        return onCall
    return decorator              # Returns the actual decorator

@timer('==>')                     # Like listcomp = timer('==>')(listcomp)
def listcomp(N): …                # listcomp is rebound to new onCall

listcomp(…)                       # Really calls onCall

This code adds an enclosing scope to retain a decorator argument for use on a later actual call. When
the listcomp function is defined, Python really invokes decorator—the result of timer, run before
decoration actually occurs—with the label value available in its enclosing scope. That is, timer returns
the decorator, which remembers both the decorator argument and the original function, and returns
the callable onCall, which ultimately invokes the original function on later calls. Because this structure
creates new decorator and onCall functions, their enclosing scopes are per-decoration state retention.
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We can put this structure to use in our timer to allow a label and a trace control flag to be passed in at
decoration time. Example 39-10 does just that, coded in a module file so it can be imported as a general
tool; it uses a class for the second state retention level instead of a nested function, but the net result is
similar.

Example 39-10. timerdeco2.py
import time

def timer(label='', trace=True):                  # On decorator args: retain args
    class Timer:
        def __init__(self, func):                 # On @: retain decorated func
            self.func    = func
            self.alltime = 0
        def __call__(self, *args, **kargs):       # On calls: call original
            start   = time.perf_counter()
            result  = self.func(*args, **kargs)
            elapsed = time.perf_counter() - start
            self.alltime += elapsed
            if trace:
                if label: print(label, end=' ')
                print(f'{self.func.__name__}: {elapsed:.5f}, {self.alltime:.5f}')
            return result
    return Timer

Mostly, all we’ve done here is embed the original Timer class in an enclosing function in order to create
a scope that retains the decorator arguments per deployment. The outer timer function is called before
decoration occurs, and it simply returns the Timer class to serve as the actual decorator. On decoration,
an instance of Timer is made that remembers the decorated function itself, but also has access to the
decorator arguments in the enclosing function scope.

This time, rather than embedding self-test code in this file, we’ll run the decorator in a different file.
Example 39-11 is a client of our timer decorator, applying it to sequence iteration alternatives again.

Example 39-11. testseqs.py
import sys
from timerdeco2 import timer

@timer(label='[CCC]==>')
def listcomp(N):                             # Like listcomp = timer(...)(listcomp)
    return [x * 2 for x in range(N)]         # listcomp(...) triggers Timer.__call__

@timer(trace=True, label='[MMM]==>')
def mapcall(N):
    return list(map((lambda x: x * 2), range(N)))

for func in (listcomp, mapcall):
    result = func(5)                         # Time for this call, return value
    func(50_000)
    func(500_000)
    func(1_000_000)
    print(result)
    print(f'allTime = {func.alltime}\n')     # Total time for all calls

print('**map/comp =', round(mapcall.alltime / listcomp.alltime, 3))
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When run, this file prints the following—each decorated function now has a label of its own defined by
decorator arguments, which may be more useful when we need to find trace displays mixed in with a
larger program’s output:

$ python3 testseqs.py
[CCC]==> listcomp: 0.00000, 0.00000
[CCC]==> listcomp: 0.00379, 0.00379
[CCC]==> listcomp: 0.03142, 0.03521
[CCC]==> listcomp: 0.05188, 0.08709
[0, 2, 4, 6, 8]
allTime = 0.08709081003325991

[MMM]==> mapcall: 0.00001, 0.00001
[MMM]==> mapcall: 0.00401, 0.00402
[MMM]==> mapcall: 0.04025, 0.04427
[MMM]==> mapcall: 0.07776, 0.12203
[0, 2, 4, 6, 8]
allTime = 0.12203056103317067

**map/comp = 1.401

Run additional tests on your own to see how the decorator’s configuration arguments come into play.
As is, this timing function decorator can be used for any function, both in modules and interactively. In
other words, it automatically serves as a general-purpose tool for timing code in our scripts. Watch for
additional examples of decorator arguments ahead when we code decorators to implement attribute
privacy and argument range checking.

Timing methods: This section’s timer decorator works on any function, but a
minor rewrite is required to apply it to class-level methods too. In short, and per
“Class Pitfall: Decorating Methods” on page 1048, it must avoid using a nested
class. Because this last mutation is being saved for an end-of-chapter quiz ques‐
tion, though, you’ll have to stay tuned for its final code.

Coding Class Decorators
So far, we’ve been coding function decorators to manage function calls, but as we’ve seen, decorators
work on classes too. As described earlier, while similar in concept to function decorators, class decora‐
tors are applied to classes instead—they may be used either to manage classes themselves or to intercept
instance-creation calls in order to manage instances. Also like function decorators, class decorators are
really just optional syntactic sugar, though they can make a programmer’s intent more obvious and
minimize erroneous or missed calls.

Singleton Classes
Let’s start with something simple. By intercepting instance-creation calls, class decorators can be used
to either manage all the instances of a class, or augment the interfaces of those instances. Example 39-12
lists a first class decorator example that does the former—managing all instances of a class. This code
implements the classic singleton coding pattern, where at most one instance of a class ever exists. Its
singleton function defines and returns a function for managing instances, and the @ syntax automati‐
cally wraps up a subject class in this function.
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Example 39-12. singletons1.py
instances = {}

def singleton(aClass):                          # On @ decoration
    def onCall(*args, **kwargs):                # On instance creation
        if aClass not in instances:             # One dict entry per class
            instances[aClass] = aClass(*args, **kwargs)
        return instances[aClass]
    return onCall

To use this, decorate the classes for which you want to enforce a single-instance model, as in
Example 39-13.

Example 39-13. singletons-test.py
from singletons1 import singleton

@singleton                                      # Person = singleton(Person)
class Person:                                   # Rebinds Person to onCall
     def __init__(self, name, hours, rate):     # onCall remembers Person
        self.name = name
        self.hours = hours
        self.rate = rate
     def pay(self):
        return self.hours * self.rate

@singleton                                      # Hack = singleton(Hack)
class Hack:                                     # Rebinds Hack to onCall
    def __init__(self, val):                    # onCall remembers Hack
        self.attr = val

sue = Person('Sue', 50, 20)                     # Really calls onCall
print(sue.name, sue.pay())

bob = Person('Bob', 40, 10)                     # Same, single object
print(bob.name, bob.pay())

X = Hack(val=42)                                # One Person, one Hack
Y = Hack(99)
print(X.attr, Y.attr)

Now, when the Person or Hack class is later used to create an instance, the wrapping logic layer pro‐
vided by the decorator routes instance-creation calls to onCall, which in turn ensures a single instance
per class, regardless of how many construction calls are made. Here’s this code’s output when run via
command line:

$ python3 singletons.py
Sue 1000
Sue 1000
42 42

Singleton coding alternatives
Interestingly, you can code a more self-contained solution here with the nonlocal statement to change
enclosing-scope names as described earlier. The following alternative achieves an identical effect, by
using one enclosing scope per class, instead of one global table entry per class. It works the same, but it
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does not depend on names in the global scope outside the decorator (the None check could use is
instead of == here, but it’s a trivial test either way):

def singleton(aClass):                                   # On @ decoration
    instance = None
    def onCall(*args, **kwargs):                         # On instance creation
        nonlocal instance 
        if instance == None:
            instance = aClass(*args, **kwargs)           # One scope per class
        return instance
    return onCall

You can also code a self-contained solution with either function attributes or a class instead. The first of
the following codes the former, leveraging the fact that there will be one onCall function per
decoration—the function object’s namespace serves the same role as an enclosing scope. The second
uses one instance per decoration, rather than an enclosing scope, function object, or global table. In
fact, the second option relies on the same coding pattern that we will later label a common decorator
class pitfall—here we want just one instance, but that’s not often the case:

def singleton(aClass):                                   # On @ decoration
    def onCall(*args, **kwargs):                         # On instance creation
        if onCall.instance == None:
            onCall.instance = aClass(*args, **kwargs)    # One function per class
        return onCall.instance
    onCall.instance = None
    return onCall

class singleton:
    def __init__(self, aClass):                          # On @ decoration
        self.aClass = aClass
        self.instance = None
    def __call__(self, *args, **kwargs):                 # On instance creation
        if self.instance == None:
            self.instance = self.aClass(*args, **kwargs) # One instance per class
        return self.instance

To make this singleton decorator a fully general-purpose tool, choose one version, store it in an import‐
able module file, and indent the self-test code under a __name__ check—steps we’ll leave as suggested
exercise. The final class-based version offers an explicit option with extra structure that may better sup‐
port later evolution, but OOP might not be warranted in all contexts.

Tracing Object Interfaces
The singleton example of the prior section illustrated using class decorators to manage all the instances
of a class. Another common use case for class decorators augments the interface of each generated
instance. Class decorators can essentially install a wrapper or “proxy” logic layer atop instances that
manages access to their interfaces.

For example, in Chapter 31, the __getattr__ operator-overloading method was shown as a way to
wrap up entire object interfaces of embedded instances in order to implement the delegation coding
pattern. We saw similar examples in the managed attribute coverage of the prior chapter. Recall that
__getattr__ is run when an undefined attribute name is fetched; we can use this hook to intercept
method calls in a controller class and propagate them to an embedded object.
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The nondecorator approach
For reference and review, here’s the original nondecorator delegation example:

class Wrapper:
    def __init__(self, object):
        self.wrapped = object                    # Save object
    def __getattr__(self, attrname):
        print('Trace:', attrname)                # Trace fetch
        return getattr(self.wrapped, attrname)   # Delegate fetch

x = Wrapper([1,2,3])       # Wrap a list object
x.append(4)                # Delegate to list method

In this code, the Wrapper class intercepts access to any of the wrapped object’s explicitly named
attributes, prints a trace message, and uses the getattr built-in to pass off the request to the wrapped
object. Specifically, it traces attribute accesses made outside the wrapped object’s class; accesses inside
the wrapped object’s methods are not caught and run normally by design. This whole-interface model
differs from the behavior of function decorators, which wrap up just one specific method.

The class-decorator approach
Class decorators provide an alternative and convenient way to code this __getattr__ technique and
wrap an entire interface. The preceding code, for example, can be coded as a class decorator that trig‐
gers wrapped instance creation instead of passing a premade instance into the wrapper’s constructor.
Example 39-14 codes this mod, also supports keyword arguments with **kargs, and counts the num‐
ber of accesses to illustrate changeable state.

Example 39-14. interfacetracer.py
def Tracer(aClass):                                   # On @ decorator
    class Wrapper:
        def __init__(self, *args, **kargs):           # On instance creation
            self.fetches = 0
            self.wrapped = aClass(*args, **kargs)     # Use enclosing-scope name
        def __getattr__(self, attrname):
            print('Trace: ' + attrname)               # Catches all but own attrs
            self.fetches += 1
            return getattr(self.wrapped, attrname)    # Delegate to wrapped obj
    return Wrapper

if __name__ == '__main__':

    @Tracer
    class Hack:                                  # Hack = Tracer(Hack)
        def display(self):                       # Hack is rebound to Wrapper
            print('Hack!' * 3)

    @Tracer
    class Person:                                # Person = Tracer(Person)
        def __init__(self, name, hours, rate):   # Wrapper remembers Person
            self.name = name
            self.hours = hours
            self.rate = rate
        def pay(self):                           # Accesses outside class traced
            return self.hours * self.rate        # In-method accesses not traced
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    work = Hack()                                # Triggers Wrapper()
    work.display()                               # Triggers __getattr__
    print([work.fetches])

    print()
    bob = Person('Bob', 40, 50)                  # bob is really a Wrapper
    print(bob.name)                              # Wrapper embeds a Person
    print(bob.pay())

    print()
    sue = Person('Sue', rate=100, hours=60)      # sue is a different Wrapper
    print(sue.name)                              # With a different Person
    print(sue.pay())

    print()
    print(bob.name)                              # bob's state != sue's state
    print(bob.pay())
    print('calls:', [bob.fetches, sue.fetches])  # Wrapper attrs are not traced

It’s important to note that this is very different from the tracer decorator we met earlier (despite the
name!). In “Coding Function Decorators” on page 1043, we looked at decorators that enabled us to
trace and time calls to a given function or method. In contrast, by intercepting instance-creation calls,
the class decorator here allows us to trace an entire object interface—that is, accesses to any of the
instance’s attributes.

It’s also important to note that this decorator’s __getattr__ won’t catch the implicit attribute fetches of
built-in operations per the prior chapter, but we’ll defer more on this subject until we code attribute pri‐
vacy ahead.

The following is the output produced by this code: attribute fetches on instances of both the Hack and
Person classes invoke the __getattr__ logic in the Wrapper class because work, and bob, and sue are
really instances of Wrapper, thanks to the decorator’s redirection of instance-creation calls:

$ python3 interfacetracer.py
Trace: display
Hack!Hack!Hack!
[1]

Trace: name
Bob
Trace: pay
2000

Trace: name
Sue
Trace: pay
6000

Trace: name
Bob
Trace: pay
2000
calls: [4, 2]

Notice how there is one Wrapper class with state retention per decoration, generated by the nested
class statement in the Tracer function, and how each instance gets its own fetches counter by virtue of
generating a new Wrapper instance. As you’ll see ahead, orchestrating this is trickier than you may
expect.
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Applying class decorators to built-in types
Also notice that the preceding decorates a user-defined class. Just like in the original example in Chap‐
ter 31, we can also use the decorator to wrap up a built-in object type such as a list, as long as we either
subclass to allow decoration syntax or perform the decoration rebinding manually—decorator syntax
requires a class statement for the @ line. In the following, x is really a Wrapper again due to the indirec‐
tion of decoration:

>>> from interfacetracer import Tracer

>>> @Tracer
... class MyList(list): pass      # MyList = Tracer(MyList)

>>> x = MyList([1, 2, 3])         # Triggers Wrapper()
>>> x.append(4)                   # Triggers __getattr__, append
Trace: append
>>> x.wrapped
[1, 2, 3, 4]

>>> MyList = Tracer(list)         # Or perform decoration manually
>>> x = MyList([4, 5, 6])         # Else subclass statement required
>>> x.append(7)
Trace: append
>>> x.wrapped
[4, 5, 6, 7]

The decorator approach allows us to move instance creation into the decorator itself instead of requir‐
ing a premade object to be passed in. Although this seems like a minor difference, it lets us retain nor‐
mal instance-creation syntax and limits augmentation syntax to class definition. Rather than requiring
all instance-creation calls to route objects through a wrapper manually, we need only augment class def‐
initions with decorator syntax:

@Tracer                                          # Decorator approach
class Person: …
bob = Person('Bob', 40, 50)
sue = Person('Sue', rate=100, hours=60)

class Person: …                                  # Nondecorator approach
bob = Wrapper(Person('Bob', 40, 50))
sue = Wrapper(Person('Sue', rate=100, hours=60))

Assuming you will make more than one instance of a class and want to apply the augmentation to every
instance of a class, decorators will generally be a net win in terms of both code size and code
maintenance.

Class Pitfall: Retaining Multiple Instances
Curiously, the decorator function in the preceding example can almost be coded as a class instead of a
function with the proper operator-overloading protocol. Example 39-15’s alternative coding works sim‐
ilarly because its __init__ is triggered when the @ decorator is applied to the class, and its __call__ is
triggered when a subject class instance is created. Our objects are really instances of Tracer this time,
and we essentially just trade an enclosing-scope reference for an instance attribute here.
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Example 39-15. interfacetracer-fail.py (start)
class Tracer:
    def __init__(self, aClass):               # On @decorator
        self.aClass = aClass                  # Use instance attribute
    def __call__(self, *args):                # On instance creation
        self.wrapped = self.aClass(*args)     # ONE (LAST) INSTANCE PER CLASS!
        return self
    def __getattr__(self, attrname):
        print('Trace:', attrname)
        return getattr(self.wrapped, attrname)

@Tracer                                       # Triggers __init__
class Hack:                                   # Like: Hack = Tracer(Hack)
    def display(self):
        print('Hack!' * 3)

work = Hack()                                 # Triggers __call__
work.display()                                # Triggers __getattr__

As we saw in the abstract earlier, though, this class-only alternative handles multiple classes as before,
but it won’t quite work for multiple instances of a given class: each instance-creation call triggers
__call__, which overwrites the prior instance. The net effect is that Tracer saves just one instance—
the last one created. Example 39-16 extends this file to demo the problem.

Example 39-16. interfacetracer-fail.py (continued)
@Tracer
class Person:                                 # Person = Tracer(Person)
    def __init__(self, name):                 # Person rebound to a Tracer
        self.name = name

bob = Person('Bob')                           # bob is really a Tracer
print(bob.name)                               # Tracer embeds a Person
sue = Person('Sue')
print(sue.name)                               # sue overwrites bob
print(bob.name)                               # OOPS: now bob's name is 'Sue'!

This code’s output follows—because this tracer only has a single shared instance, the second overwrites
the first:

$ python3 interfacetracer-fail.py 
Trace: display
Hack!Hack!Hack!
Trace: name
Bob
Trace: name
Sue
Trace: name
Sue

The problem here is bad state retention—we make one decorator instance per class but not per class
instance, such that only the last instance is retained. The solution, as in our prior class pitfall for deco‐
rating methods, lies in abandoning class-based decorators.

The earlier function-based Tracer version of Example 39-14, however, does work for multiple instan‐
ces. Because it returns a class instead of an instance of that class, each instance-creation call makes a
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new Wrapper instance instead of overwriting the state of a single shared Tracer instance. The original
nondecorator version handles multiple instances correctly for the same reason. The moral here: decora‐
tors are not only arguably magical, they can also be incredibly subtle!

Example: “Private” and “Public” Attributes
The final two sections of this chapter present larger examples of decorator use, which give us a chance
to see how concepts come together in more useful code. Both are presented with minimal description,
partly to conserve space but mostly because you should already understand decorator basics well
enough to be able to study these on your own.

Implementing Private Attributes
First up, the class decorator in Example 39-17 implements a Private declaration and access checks for
class instance attributes—that is, for attributes stored on an instance, or inherited from one of its
classes.

This decorator disallows fetch and change access to such attributes from outside the decorated class but
still allows the class itself to access those names freely within its own methods. It’s not quite the same as
“private” in C++ or Java—and Python is not about control in general—but this decorator demo pro‐
vides similar access validations as an option in Python for the rare and atypical cases where this might
be useful during development.

We saw an initial and incomplete implementation of instance attribute privacy for changes only in
Chapter 30. The version here extends this concept to validate attribute fetches, too, and it uses delega‐
tion instead of inheritance to implement the model. In a sense, this is also just an extension to the
attribute-tracer class decorator we met earlier.

Although this example utilizes the syntactic sugar of class decorators to code attribute privacy, its
attribute interception is ultimately still based upon the __getattr__ and __setattr__ operator-
overloading methods we met in prior chapters. When a private attribute access is detected, this version
uses the raise statement to raise an exception, along with an error message; the exception may be
caught in a try or allowed to terminate the accessing script.

Example 39-17 lists the decorator’s first-cut code, along with a self-test at the bottom of the file. As
coded, it catches all explicit attribute fetches, but not the implicit fetches of built-in operations (more
on this in a moment).

Example 39-17. access1.py
"""
Class decorator with Private attribute declarations.

Privacy for attributes fetched from class instances.
See self-test code at end of file for a usage example.

Rebinding is: Doubler = Private('data', 'size')(Doubler).
Private returns onDecorator, onDecorator returns onInstance,
and each onInstance instance embeds a new Doubler instance.
"""

traceMe = False
def trace(*args):
    if traceMe: print(f'[{' '.join(map(str, args))}]')   # Python 3.12+ f-string
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def Private(*privates):                              # privates in enclosing scope
    def onDecorator(aClass):                         # aClass in enclosing scope
        class onInstance:                            # wrapped in instance attribute
            def __init__(self, *args, **kargs):
                self.wrapped = aClass(*args, **kargs)

            def __getattr__(self, attr):             # My attrs don't call getattr
                trace('get:', attr)                  # Others assumed in wrapped
                if attr in privates:
                    raise TypeError('private attribute fetch, ' + attr)
                else:
                    return getattr(self.wrapped, attr)

            def __setattr__(self, attr, value):             # Outside accesses
                trace('set:', attr, value)                  # Others run normally
                if attr == 'wrapped':                       # Allow my attrs
                    self.__dict__[attr] = value             # Avoid looping
                elif attr in privates:
                    raise TypeError('private attribute change, ' + attr)
                else:
                    setattr(self.wrapped, attr, value)      # Wrapped obj attrs
        return onInstance
    return onDecorator

if __name__ == '__main__':
    traceMe = True

    @Private('data', 'size')                   # Doubler = Private(...)(Doubler)
    class Doubler:
        def __init__(self, label, start):
            self.label = label                 # Accesses inside the subject class
            self.data  = start                 # Not intercepted: run normally
        def size(self):
            return len(self.data)              # Method bodies run with no checking
        def double(self):                      # Because privacy not inherited
            for i in range(self.size()):
                self.data[i] = self.data[i] * 2
        def display(self):
            print(f'{self.label} => {self.data}')

    print('Making instances...')
    X = Doubler('X is', [1, 2, 3])
    Y = Doubler('Y is', [-10, -20, -30])

    # The following all succeed properly

    print('\nExploring X instance...')
    print(X.label)                             # Accesses outside subject class
    X.display(); X.double(); X.display()       # Intercepted: validated, delegated

    print('\nExploring Y instance...')
    print(Y.label)
    Y.display(); Y.double()
    Y.label = 'Hack'
    Y.display()

    # The following all fail properly
    """
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    print(X.size())          # Prints "TypeError: private attribute fetch, size"
    print(X.data)
    X.data = [1, 1, 1]       # Prints "TypeError: private attribute change, data"
    X.size = lambda S: 0
    print(Y.data)
    print(Y.size())
    """

When its traceMe is True, the module file’s self-test code produces the following output. Notice how the
decorator catches and validates both attribute fetches and assignments run outside of the wrapped class
but does not catch attribute accesses inside the class itself:

$ python3 access1.py
Making instances...
[set: wrapped <__main__.Doubler object at 0x1059c7d70>]
[set: wrapped <__main__.Doubler object at 0x1059c7da0>]

Exploring X instance...
[get: label]
X is
[get: display]
X is => [1, 2, 3]
[get: double]
[get: display]
X is => [2, 4, 6]

Exploring Y instance...
[get: label]
Y is
[get: display]
Y is => [-10, -20, -30]
[get: double]
[set: label Hack]
[get: display]
Hack => [-20, -40, -60]

Implementation Details I
This code is nontrivial, and you’re probably best off tracing through it on your own to see how it works.
To help you study, though, here are a few highlights worth mentioning.

Inheritance versus delegation
The initial and limited privacy example shown in Chapter 30 used inheritance to mix in a __setattr__
to catch accesses. Inheritance makes this difficult, however, because differentiating between accesses
from inside or outside the class is not straightforward (inside access should be allowed to run normally,
and outside access should be restricted). To work around this, the Chapter 30 example requires inherit‐
ing classes to use __dict__ assignments to set attributes—an incomplete solution at best.

The version here uses delegation (embedding one object inside another) instead of inheritance; this pat‐
tern is better suited to our task as it makes it much easier to distinguish between accesses inside and
outside of the subject class. Attribute accesses from outside the subject class are intercepted by the
wrapper layer’s overloading methods and delegated to the class if valid. Accesses inside the class itself
(i.e., through self within its methods’ code) are not intercepted and are allowed to run normally
without checks because privacy is not inherited in this version.
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Decorator arguments
The class decorator used here accepts any number of arguments to name private attributes. Again,
though, this simply means that the arguments are passed to the Private function, and Private returns
the decorator function to be applied to the subject class. That is, the arguments are used before decora‐
tion ever occurs; Private returns the decorator, which in turn “remembers” the privates list as an
enclosing-scope reference.

State retention and enclosing scopes
Speaking of enclosing scopes, there are actually three levels of state retention at work in this code:

• The arguments to Private are used before decoration occurs and are retained as an enclosing-
scope reference for use in both onDecorator and onInstance.

• The class argument to onDecorator is used at decoration time and is retained as an enclosing-
scope reference for use at instance-creation time.

• The wrapped instance object is retained as an instance attribute in the onInstance proxy object for
use when attributes are later accessed from outside the class.

This all works fairly naturally, given Python’s scope and namespace rules.

Using __dict__ and __slots__ (and other virtuals)
The __setattr__ method in this code relies on an instance object’s __dict__ attribute namespace dic‐
tionary in order to set onInstance’s own wrapped attribute. As we learned in the prior chapter, this
method cannot assign an attribute directly without looping. However, it uses the setattr built-in
instead of __dict__ to set attributes in the wrapped object itself. Moreover, getattr is used to fetch
attributes in the wrapped object since they may be stored in the object itself or inherited by it.

Because of that, this code will work for most classes—including those with “virtual” class-level
attributes based on slots, properties, descriptors, and even __getattr__ and its ilk. By assuming a name‐
space dictionary for itself only and using storage-neutral tools for the wrapped object, the wrapper class
avoids limitations imposed by other tools.

For example, you may recall from Chapter 32 that classes with __slots__ may not store attributes in a
__dict__, and in fact, may not even have one of these at all. However, because we rely on a __dict__
only at the onInstance level here and not in the wrapped instance, this concern does not apply. Class
onInstance will have a __dict__ itself because it does not use slots. In addition, because setattr and
getattr apply to attributes based on both __dict__ and __slots__, our decorator applies to wrapped
classes using either storage scheme.

By the same reasoning, the decorator also applies to properties and similar tools: delegated names will
be looked up anew in the wrapped instance, irrespective of attributes of the decorator proxy object
itself.

Generalizing for Public Declarations
Now that we have a Private attribute implementation, it’s straightforward to generalize the code to 
allow for Public declarations too—they are essentially the inverse of Private declarations, so we need
only negate the inner test. The example listed in Example 39-18 allows a class to use decorators to
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define a set of either Private or Public instance attributes—attributes of any kind stored on an
instance or inherited from its classes—with the following semantics:

• Private declares attributes of a class’s instances that cannot be fetched or assigned except from
within the code of the class’s methods. That is, any name declared Private cannot be accessed
from outside the class, while any name not declared Private can be freely fetched or assigned from
outside the class.

• Public declares attributes of a class’s instances that can be fetched or assigned from both outside
the class and within the class’s methods. That is, any name declared Public can be freely accessed
anywhere, while any name not declared Public cannot be accessed from outside the class.

Private and Public declarations are mutually exclusive: when using Private, all undeclared names are
considered Public, and when using Public, all undeclared names are considered Private. They are
essentially opposites, though undeclared names not created by a class’s methods behave slightly
differently—new names can be assigned and thus created outside the class under Private (all unde‐
clared names are accessible) but not under Public (all undeclared names are inaccessible).

Again, study this code on your own to get a feel for how this works. Notice that this scheme adds an
additional fourth level of state retention at the top, beyond that described in the preceding section: the
validation functions used by the lambdas are saved in an extra enclosing scope coded separately. This
version comes with the same caveat as its predecessor for attributes of built-in operations, noted in the
file’s docstring and expanded on after the example.

Example 39-18. access2.py
"""
Class decorator with Private and Public attribute declarations.

Controls external access to attributes stored on an instance, or
inherited by it from its classes.  Private declares attribute names
that cannot be fetched or assigned outside the decorated class,
and Public declares all the names that can.  Choose either decorator.

Caveat: as is, this works for explicitly-named attributes only.  The
__X__ operator-overloading methods fetched implicitly for built-in 
operations do not trigger either __getattr__ or __getattribute__, and
hence won't be delegated to any wrapped objects that define them.  If 
needed, add __X__ methods to catch and delegate built-ins (per ahead).
"""

traceMe = False
def trace(*args):
    if traceMe: print('[' + ' '.join(map(str, args)) + ']')

def accessControl(failIf):
    def onDecorator(aClass):
        class onInstance:
            def __init__(self, *args, **kargs):
                self.__wrapped = aClass(*args, **kargs)

            def __getattr__(self, attr):
                trace('get:', attr)
                if failIf(attr):
                    raise TypeError('private attribute fetch, ' + attr)
                else:
                    return getattr(self.__wrapped, attr)
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            def __setattr__(self, attr, value):
                trace('set:', attr, value)
                if attr == '_onInstance__wrapped':
                    self.__dict__[attr] = value
                elif failIf(attr):
                    raise TypeError('private attribute change, ' + attr)
                else:
                    setattr(self.__wrapped, attr, value)
        return onInstance
    return onDecorator

def Private(*attributes):
    return accessControl(failIf=(lambda attr: attr in attributes))

def Public(*attributes):
    return accessControl(failIf=(lambda attr: attr not in attributes))

See the prior example’s self-test code for a usage example—the effect is the same for Private. Here’s a
quick look at these class decorators in action at the interactive prompt. As advertised, non-Private or
Public names can be fetched and changed from outside the subject class, but Private or non-Public
names cannot:

>>> from access2 import Private, Public

>>> @Private('age')                             # Person = Private('age')(Person)
... class Person:                               # Person = onInstance with state
        def __init__(self, name, age):
            self.name = name
            self.age  = age                     # Inside accesses run normally
 
>>> X = Person('Pat', 40)
>>> X.name                                      # Outside accesses validated
'Pat'
>>> X.name = 'Sue'
>>> X.name
'Sue'
>>> X.age
TypeError: private attribute fetch, age
>>> X.age = 'Bob'
TypeError: private attribute change, age

>>> @Public('name')
... class Person:
        def __init__(self, name, age):
            self.name = name
            self.age  = age
 
>>> X = Person('Pat', 40)                       # X is an onInstance
>>> X.name                                      # onInstance embeds Person
'Pat'
>>> X.name = 'Sue'
>>> X.name
'Sue'
>>> X.age
TypeError: private attribute fetch, age
>>> X.age = 'Bob'
TypeError: private attribute change, age
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Implementation Details II
To help you analyze Example 39-18’s code, here are a few final notes on this version. Since this is just a
generalization of the preceding section’s version, the implementation notes there apply here as well.

Using “__X” pseudoprivate names
Besides generalizing, this version also makes use of Python’s __X pseudoprivate name mangling feature,
which we met in Chapter 31, to localize the wrapped attribute to the proxy control class by automati‐
cally prefixing it with this class’s name. This avoids the prior version’s risk for collisions with a wrapped
attribute that may be used by the real, wrapped class, and it’s useful in a general tool like this. It’s not
quite “privacy,” though, because the mangled version of the name can be used freely outside the class.
Notice that we also have to use the fully expanded name string—'_onInstance__wrapped'—as an
admin-name test value in __setattr__ because that’s what Python changes it to.

Breaking privacy
Although this example does implement access controls for attributes of an instance and its classes,
it is possible to subvert these controls trivially—for instance, by fetching through the expanded version
of the wrapped attribute explicitly (bob.pay might not work, but the fully mangled
bob._onInstance__wrapped.pay could!). If you have to try that hard to break them, though, these tools
probably suffice for intended roles. Of course, privacy can generally be subverted in other languages too
(e.g., #define private public may work in some C++ implementations). Although access controls
may reduce accidental mods, much of this is up to programmers in any language; whenever source
code may be changed, airtight access control will always be a pipe dream. More fundamentally, Python
is about enabling, not controlling; privacy is a tool best used sparingly (if at all).

Decorator trade-offs
We could again achieve the same results without decorators by using helper functions or coding the
name rebinding of decorators manually; the decorator syntax, however, makes this consistent and obvi‐
ous in code. The chief potential downsides of this and any other wrapper-based approach are that
attribute access incurs an extra call, and instances of decorated classes are not really instances of the
original decorated class—if you test their type with X.__class__ or isinstance(X, C), for example,
you’ll find that they are instances of the wrapper class. Unless you plan to do introspection on objects’
types, though, the type issue is irrelevant, and the extra call may apply mostly to development time; as
you’ll see later, it’s possible to remove decorations automatically (via -O) if desired.

Delegating Built-In Operations
As is, this section’s examples work as planned for methods and other attributes fetched explicitly by
name. As with most software, though, there is always room for improvement. Most notably, this tool
turns in mixed performance on operator-overloading methods if they are used by client classes.

Specifically, the proxy class fails to validate or delegate operator-overloading methods fetched implicitly
by built-in operations unless such methods are redefined in the proxy. Clients that do not use operator
overloading are fully supported, but others may require additional code. It’s unclear that operator-
overloading methods should be validated as private or public, but they are a part of an object’s interface
and should at least be routed to wrapped objects that define them.
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We’ve encountered this issue a few times already in this book, but let’s take a quick look at its impact on
the realistic code we’ve written here and explore workarounds for it. The basic issue is easy to demo—as
we’ve learned, the following is how a class that overloads print calls and + expressions normally works:

>>> class Tally:
        def __init__(self):
            self.sum = 0
        def __str__(self):
            return f'Tally: {self.sum}'
        def __add__(self, add):
            self.sum += add
 
>>> X = Tally()
>>> X.sum             # All attributes accessible
0
>>> print(X)          # Same as X.__str__() {sort of}
Tally: 0
>>> X + 5             # Same as X.__add__(5) {ditto}
>>> print(X)
Tally: 5

Unfortunately, objects that implement built-in operations like this fail in our proxy classes because
built-in operations skip instance-level lookup protocols like __getattr__, and instead search namespa‐
ces of classes:

>>> from access2 import Private
>>> @Private('sum', '__add__')
... class Tally:
        …same as before…

>>> X = Tally()
>>> X.sum             
TypeError: private attribute fetch, sum

>>> X.__add__(5)
TypeError: private attribute fetch, __add__

>>> print(X)    
<access2.accessControl.<locals>.onDecorator.<locals>.onInstance object at 0x…etc…>
 
>>> X + 5             
TypeError: unsupported operand type(s) for +: 'onInstance' and 'int'

In this session, the first two explicit fetches of sum and __add__ are kicked out as privates as they should
be. Because the last two implicit fetches of print and + aren’t caught by the proxy, though, they are
never delegated to the wrapped Tally object. The print here only works at all because it runs an
object default to print the proxy itself. Per the prior chapter, this is an inconsistency in Python; per the
following sections, it can also be avoided in full.

Workaround: Coding operator-overloading methods inline
The most straightforward way to support built-ins in delegation proxies is to redefine operator-
overloading names that may appear in embedded objects. This creates some code redundancy, but it
isn’t impossibly onerous; can be automated with tools or superclasses; and can choose to run or skip
validations for operator-overloading names declared Private or Public, depending on redefinitions’
routing.
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For instance, the partial listing of Example 39-19 sketches an inline redefinition approach—it catches
and delegates built-ins by adding method definitions to the proxy itself for every operator-overloading
method a wrapped object may define. It adds just four operation interceptors to illustrate, but others are
similar (in this section, new code is in bold font, and all examples are based on the decorator of
access2.py in Example 39-18).

Example 39-19. access_builtins_inline_direct.py
"Inline methods, skip validations"

def accessControl(failIf):
    def onDecorator(aClass):
        class onInstance:
            def __init__(self, *args, **kargs):
                self.__wrapped = aClass(*args, **kargs)

            # Intercept and delegate built-in implicit access specifically

            def __add__(self, other):
                return self.__wrapped + other           # Or getattr(), __getattr__()
            def __str__(self):
                return str(self.__wrapped)              # Or self.__wrapped.__str__()
            def __getitem__(self, index):
                return self.__wrapped[index]
            def __call__(self, *args, **kargs):
                return self.__wrapped(*args, **kargs)
            # Plus any others needed

            # Intercept and delegate explicit attribute access generically

            def __getattr__(self, attr): …same…
            def __setattr__(self, attr, value): …same…
        return onInstance
    return onDecorator

This works because built-ins will find their requisite methods in the proxy class after skipping the proxy
instance. As coded, the new interceptor methods trigger the wrapped object’s operator-overloading
methods directly and so bypass the access controls of __getattr__, which may or may not be desirable.
For alternative codings, let’s move on.

Workaround: Coding operator-overloading methods in superclasses
More usefully, the prior section’s added methods can be added by a common superclass. Given that
there are dozens of such methods, an external class may be better suited to the task, especially if it is
general enough to be used in any such interface-proxy class.

To demo, the superclass of Example 39-20 catches built-ins and reroutes to the wrapped object directly
again. It’s largely just a repackaging of the prior section’s inline scheme, but as a separate class it requires
a proxy attribute named _wrapped, giving access to the embedded object. The decorator itself must use
this name instead of __wrapped in self references, and sans mangling in __setattr__. This may be
subpar because it precludes the same name in wrapped objects and creates a subclass dependency, but
it’s better than using the mangled and subclass-specific _onInstance__wrapped and is no worse than a
similarly named method.
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Example 39-20. access_builtins_mixin_direct.py
"Inherit methods, skip validations"

class BuiltinsMixin:
    def __add__(self, other):
        return self._wrapped + other                          # Assume a _wrapped
    def __str__(self):                                        # Bypass __getattr__
        return str(self._wrapped)
    def __getitem__(self, index):
        return self._wrapped[index]
    def __call__(self, *args, **kargs):
        return self._wrapped(*args, **kargs)
    # Plus any others needed

def accessControl(failIf):
    def onDecorator(aClass):
        class onInstance(BuiltinsMixin):
            …rest same, but use unmangled _wrapped instead of __wrapped…

Alternatively, the superclass in Example 39-21 catches built-ins and reroutes them down through the
subclass __getattr__ to apply its access controls to the operation’s method name. It requires that
operator-overloading names be non-Private or Public per the decorator’s arguments if they are to be
run, but it treats the implicit fetches of built-in operations the same as explicit-name fetches, and no
_wrapped is required in subclasses.

Example 39-21. access_builtins_mixin_getattr.py
"Inherit methods, run validations"

class BuiltinsMixin:
    def __add__(self, other):
        return self.__getattr__('__add__')(other)             # Route to validator
    def __str__(self):                                        # Finish operations
        return self.__getattr__('__str__')()
    def __getitem__(self, index):
        return self.__getattr__('__getitem__')(index)
    def __call__(self, *args, **kargs):
        return self.__getattr__('__call__')(*args, **kargs)
    # Plus any others needed

def accessControl(failIf):
    def onDecorator(aClass):
        class onInstance(BuiltinsMixin):                      # Inherit methods
            …rest unchanged…

Like the inline approach, both of these mix-ins also require one method per built-in operation in gen‐
eral tools that proxy arbitrary objects’ interfaces. The next idea does marginally better.

Workaround: Generating operator-overloading descriptors
Finally, all of the inline and mix-in workarounds for built-ins we’ve seen so far code each operator-
overloading method explicitly, and intercept the actual call issued for the operation, including its argu‐
ments. That makes them responsible for completing the operation, whether by operation syntax or
equivalent calls.
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With an alternative coding, we could instead intercept only the attribute fetch preceding the call by
using the class-level descriptors of the prior chapter. Moreover, because all such descriptors will run the
same, they can be generated automatically from a list of method names. Example 39-22 shows one way
to code this scheme. Like Example 39-21, it routes built-in operations through the decorator’s valida‐
tions logic to apply private or public checks.

Example 39-22. access_builtins_mixin_desc.py
"Inherit descriptors, run validations"

class BuiltinsMixin:
    class ProxyDesc:                                          # Define descriptor
        def __init__(self, attrname):
            self.attrname = attrname
        def __get__(self, instance, owner):
            return instance.__getattr__(self.attrname)        # Run validations

    builtins = ['add', 'str', 'getitem', 'call']              # Plus any others
    for attr in builtins:
        exec(f'__{attr}__ = ProxyDesc("__{attr}__")')         # Make descriptors

def accessControl(failIf):
    def onDecorator(aClass):
        class onInstance(BuiltinsMixin):                      # Inherit descriptors
            …rest unchanged…

This coding may be the most concise but also the most implicit and complex. Recall that the exec built-
in by default runs a string of code as if the string was somehow pasted where the exec appears. Hence,
the loop at the end of this mix-in class is equivalent to the following statements, run in the mix-in class’s
local scope:

    __add__ = ProxyDesc("__add__")
    __str__ = ProxyDesc("__str__")
    …etc…

The net effect creates inherited descriptor instances that respond to initial name lookups by fetching
from the wrapped object in __get__ rather than catching the later operation call itself (which happens
after this step). If you still find this code confusing (and you probably should), it’s equivalent to this
stripped-down version, though the name fetch occurs implicitly in a built-in operation that skips the
instance’s protocols:

>>> class B:
        class D:
            def __get__(s, i, o): return i.meth()
        name = D()
 
>>> class A(B):
        def meth(self): return 'hack'
 
>>> I = A()
>>> I.name
'hack'

We could also skip the decorator’s validations for built-in operations in this scheme by routing attribute
fetches directly to the wrapped object—though this requires an accessible _wrapped in the decorator
just like Example 39-20:
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    class ProxyDesc:                                             
        …
        def __get__(self, instance, owner):
            return getattr(instance._wrapped, self.attrname)     # Assume a _wrapped

In the end, all of these workarounds make classes that overload built-in operations work correctly with
our private and public decorators—and other delegation-based decorators like them:

>>> from access_builtins_mixin_desc import Private

>>> @Private('sum')
... class Tally: 
        def __init__(self):
            self.sum = 0
        def __str__(self):
            return f'Tally: {self.sum}'
        def __add__(self, add):
            self.sum += add

>>> X = Tally()
>>> X.sum                                          # Explicit validated
TypeError: private attribute fetch, sum
>>> X + 10                                         # Built-in delegated
>>> print(X)                                       # Built-in delegated
Tally: 10

Public (nonprivate) built-ins are now delegated and work, but private built-ins are validated and
canceled:

>>> @Private('sum', '__add__')
... class Tally: 
        …same as before…

>>> X = Tally()
>>> X.sum                                          # Explicit validated
TypeError: private attribute fetch, sum
>>> X + 10                                         # Built-in canceled: private
TypeError: private attribute fetch, __add__
>>> print(X)                                       # Built-in allowed: public
Tally: 0

>>> @Private('__str__')
... class Tally: 
        …same as before…

>>> print(Tally())                                 # Built-in canceled: private
TypeError: private attribute fetch, __str__

If you care to experiment further with this section’s examples, see the book examples package for their
complete code, as well as its comprehensive access_builtins_TEST.py test script and results. Here, it’s
time to move on to this chapter’s next and final decorators case study.

Example: Validating Function Arguments
As a final example of the utility of decorators, this section develops a function decorator that automati‐
cally tests whether arguments passed to a function or method are within a valid numeric range. It’s
designed to be used during either development or production, and it can be used as a template for simi‐
lar tasks (e.g., argument type testing, if you must). Again, this example is largely self-study content with
a limited narrative; read the code for more details.
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The Goal
In the object-oriented tutorial of Chapter 28, we wrote a class that gave a pay raise to objects represent‐
ing fictitious people, based upon a passed-in percentage:

class Person:
     …
     def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))

There, we noted that if we wanted the code to be robust, it would be a good idea to check the percent‐
age to make sure it’s not too large or too small. We could implement such a check with either if or
assert statements in the method itself, using inline tests:

class Person:
    def giveRaise(self, percent):                # Validate with inline code
        if percent < 0.0 or percent > 1.0:
            raise TypeError, 'percent invalid'
        self.pay = int(self.pay * (1 + percent))

class Person:                                    # Validate with asserts
    def giveRaise(self, percent):
        assert percent >= 0.0 and percent <= 1.0, 'percent invalid'
        self.pay = int(self.pay * (1 + percent))

However, this approach clutters the method with inline tests that will probably be useful only during
development. For more complex cases, this can become tedious (imagine trying to inline the code
needed to implement the attribute privacy provided by the last section’s decorator). Perhaps worse, if
the validation logic ever needs to change, there may be arbitrarily many inline copies to find and
update.

A more useful and interesting alternative would be to develop a general tool that can perform range
tests for us automatically for the arguments of any function or method we might code now or in the
future. A decorator approach makes this explicit and convenient, and easy to disable once development
is complete:

class Person:
    @rangetest(percent=(0.0, 1.0))               # Use decorator to validate
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))

Isolating validation logic in a decorator simplifies both clients and future maintenance.

Notice that our goal here is different than the attribute validations coded in the prior chapter’s final
example. Here, we mean to validate the values of function arguments when passed rather than attribute
values when accessed. Python’s decorator and introspection tools allow us to code this new task just as
easily.

A Basic Range-Testing Decorator for Positional Arguments
Let’s start with a basic range-test implementation. To keep things simple, we’ll begin by coding a decora‐
tor that works only for positional arguments and assumes they always appear at the same position in
every call; they cannot be passed by keyword name because this can invalidate the positions declared in
the decorator. Example 39-23 is our first-cut checker.
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Example 39-23. rangetest0.py
def rangetest(*argchecks):                  # Validate positional arg ranges
    def onDecorator(func):
        if not __debug__:                   # True if "python -O main.py args..."
            return func                     # No-op: call original directly
        else:                               # Else wrapper while debugging
            def onCall(*args):
                for (ix, low, high) in argchecks:
                    if args[ix] < low or args[ix] > high:
                        errmsg = f'Argument {ix} not in {low}..{high}'
                        raise TypeError(errmsg)
                return func(*args)
            return onCall
    return onDecorator

As is, this code is mostly a rehash of the coding patterns we explored earlier: we use decorator argu‐
ments, nested scopes for state retention, and so on.

We also use nested def statements to ensure that this works for both simple functions and methods, as
we learned earlier. When used for a class’s method, onCall receives the subject class’s instance in the
first item in *args and passes this along to self in the original method function; explicitly passed argu‐
ment numbers coded in the @ decorator line start at 1 in this case, not 0, to accommodate the implicit
self.

New here, notice this code’s use of the __debug__ built-in variable introduced in Chapter 34. In brief,
Python sets this variable to True unless the program is being run with the –O optimize command-line
flag (e.g., python –O main.py). As discussed earlier, using options in the compile built-in function and
compileall standard-library module before code is run can have a similar effect.

Either way, when __debug__ is False, the decorator returns the original function unchanged to avoid
extra later calls and their associated performance penalty. In other words, the decorator automatically
removes its augmentation logic when –O or similar is used without requiring you to physically remove
the decoration lines in your code.

Example 39-24 demos how this first-iteration solution is used.

Example 39-24. rangetest0_test.py
from rangetest0 import rangetest
print(f'{__debug__=}')                     # False if "python -O main.py"

@rangetest((1, 0, 120))                    # persinfo = rangetest(...)(persinfo)
def persinfo(name, age):                   # age must be in 0..120
    print(f'{name} is {age} years old')

@rangetest([0, 1, 12], [1, 1, 31], [2, 0, 2024])
def birthday(M, D, Y):
    print(f'birthday = {M}/{D}/{Y}')

class Person:
    def __init__(self, name, job, pay):
        self.job  = job
        self.pay  = pay

    @rangetest([1, 0.0, 1.0])              # giveRaise = rangetest(...)(giveRaise)
    def giveRaise(self, percent):          # Arg 0 is the self instance here
        self.pay = int(self.pay * (1 + percent))
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# Comment lines raise TypeError unless "python -O" used on shell command line

persinfo('Bob Smith', 45)                  # Really runs onCall(...) with state
#persinfo('Bob Smith', 200)                # Or persinfo if -O cmd line argument

birthday(8, 31, 2024)
#birthday(8, 32, 2024)

sue = Person('Sue Jones', 'dev', 100_000)
sue.giveRaise(.10)                         # Really runs onCall(self, .10)
print(sue.pay)                             # Or giveRaise(self, .10) if -O
#sue.giveRaise(1.10)

When run, valid calls in this code produce the following output:
$ python3 rangetest0_test.py
__debug__=True
Bob Smith is 45 years old
birthday = 8/31/2024
110000

Uncommenting any of the invalid calls causes a TypeError to be raised by the decorator. Here’s the
result when the last line is allowed to run (as usual, some of the error message text was trimmed here to
save space):

$ python3 rangetest0_test.py
__debug__=True
Bob Smith is 45 years old
birthday = 8/31/2024
110000
TypeError: Argument 1 not in 0.0..1.0

Running Python with its -O flag at a system command line will disable range testing but also avoid the
performance overhead of the wrapping layer—we wind up calling the original undecorated function
directly. Assuming this is a debugging tool only, you can use this flag to optimize your program for
production use. Here is the effect with the last line still run and a print added to show sue’s fantastical
pay raise:

$ python3 -O rangetest0_test.py
__debug__=False
Bob Smith is 45 years old
birthday = 8/31/2024
110000
231000

Generalizing for Keywords and Defaults
The prior version illustrates the basics we need to employ, but it’s fairly limited—it supports validating
arguments passed by position only, and it does not validate keyword arguments (in fact, it assumes that
no keywords are passed in a way that makes argument position numbers incorrect). Additionally, it
does nothing about arguments with defaults that may be omitted in a given call. That’s fine if all your
arguments are passed by position and never defaulted, but it’s less than ideal in a general tool. As we
learned in Chapter 18, Python supports much more flexible argument-passing modes, which we’re not
yet addressing.

The level up of our decorator in Example 39-25 does better. By matching the wrapped function’s
expected arguments against the actual arguments passed in a call, it supports range validations for
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arguments passed by either position or keyword name, and it skips testing for default arguments omit‐
ted in the call. Arguments to be validated are specified by keyword arguments to the decorator itself,
which later steps through both the call’s *pargs positionals tuple and its **kargs keywords dictionary
to validate.

Example 39-25. rangetest.py
"""
A function decorator that performs range-test validation for
arguments passed to any function or method.  Usage synopsis:

    @rangetest(percent=(0.0, 1.0), month=(1, 12))
    def func-or-method(..., percent, ..., month=5, ...):
        ...
    func-or-method(..., value, month=8, ...)

Arguments are specified by keyword to the decorator. In the actual
call, arguments may be passed by position or keyword, and defaults
may be omitted.  See rangetest_test.py for example use cases.
"""
trace = True

def rangetest(**argchecks):                 # Validate ranges for both+defaults
    def onDecorator(func):                  # onCall remembers func and argchecks
        if not __debug__:                   # True if "python -O main.py args..."
            return func                     # Wrap if debugging; else use original
        else:
            funcname = func.__name__
            funccode = func.__code__
            funcargs = funccode.co_varnames[:funccode.co_argcount]

            def onCall(*pargs, **kargs):
                # All pargs match first N expected args by position
                # The rest must be in kargs or be omitted defaults
                positionals = funcargs[:len(pargs)]
                errormsg    = lambda *args: '%s argument "%s" not in %s..%s' % args

                for (argname, (low, high)) in argchecks.items():
                    # For all args to be checked
                    if argname in kargs:
                        # Was passed by name
                        if kargs[argname] < low or kargs[argname] > high:
                            raise TypeError(errormsg(funcname, argname, low, high))

                    elif argname in positionals:
                        # Was passed by position
                        position = positionals.index(argname)
                        if pargs[position] < low or pargs[position] > high:
                            raise TypeError(errormsg(funcname, argname, low, high))

                    else:
                        # Assume not passed: default
                        if trace:
                            print(f'-Argument "{argname}" defaulted')

                return func(*pargs, **kargs)    # OK: run original call
            return onCall
    return onDecorator
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Next, the test script in Example 39-26 shows how the decorator is used—arguments to be validated are
given by keyword decorator arguments, and at actual calls, we can pass by name or position and omit
arguments with defaults even if they are to be validated otherwise.

Example 39-26. rangetest_test.py
"""
Test the rangetest decorator (usage differs from rangetest0).
Comment lines raise TypeError unless "python -O" or similar in compileall.
"""
from rangetest import rangetest
def announce(what): print(what.center(24, '-'))   # str method

# Test functions, positional and keyword
announce('Functions')

@rangetest(age=(0, 120))                  # persinfo = rangetest(...)(persinfo)
def persinfo(name, age):
    print(f'{name} is {age} years old')

@rangetest(M=(1, 12), D=(1, 31), Y=(0, 2024))
def birthday(M, D, Y):
    print(f'birthday = {M}/{D}/{Y}')

persinfo('Pat', 40)
persinfo(age=40, name='Pat')
birthday(8, D=31, Y=2024)
#persinfo('Pat', 150)
#persinfo(age=150, name='Pat')
#birthday(8, Y=2025, D=40)

# Test methods, positional and keyword
announce('Methods')

class Person:
    def __init__(self, name, job, pay):
        self.job  = job
        self.pay  = pay
                                          # giveRaise = rangetest(...)(giveRaise)
    @rangetest(percent=(0.0, 1.0))        # percent passed by name or position
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))

sue = Person('Sue Jones', 'dev', 100_000)
bob = Person('Bob Smith', 'dev', 100_000)
sue.giveRaise(percent=.20)
bob.giveRaise(.10)
print(f'sue=>{sue.pay}, bob=>{bob.pay}')
#sue.giveRaise(1.20)
#bob.giveRaise(percent=1.20)

# Test omitted defaults: skipped
announce('Defaults')

@rangetest(a=(1, 10), b=(1, 10), c=(1, 10), d=(1, 10))
def omitargs(a, b=7, c=8, d=9):
    print(a, b, c, d)

omitargs(1, 2, 3, 4)           # Positionals
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omitargs(1, 2, 3)              # Default d
omitargs(1, 2, 3, d=4)         # Keyword d
omitargs(1, d=4)               # Default b and c
omitargs(d=4, a=1)             # Ditto
omitargs(1, b=2, d=4)          # Default c
omitargs(d=8, c=7, a=1)        # Default b

#omitargs(1, 2, 3, 11)         # Bad d
#omitargs(1, 2, 11)            # Bad c
#omitargs(1, 2, 3, d=11)       # Bad d
#omitargs(11, d=4)             # Bad a
#omitargs(d=4, a=11)           # Bad a
#omitargs(1, b=11, d=4)        # Bad b
#omitargs(d=8, c=7, a=11)      # Bad a

When this script is run, out-of-range arguments raise an exception as before, but arguments may be
passed by either name or position, and omitted defaults are not validated. Trace its output and test this
further on your own to experiment; it works like its simpler predecessor, but its scope has been greatly
broadened:

$ python3 rangetest_test.py
-------Functions--------
Pat is 40 years old
Pat is 40 years old
birthday = 8/31/2024
--------Methods---------
sue=>120000, bob=>110000
--------Defaults--------
1 2 3 4
-Argument "d" defaulted
1 2 3 9
1 2 3 4
-Argument "b" defaulted
-Argument "c" defaulted
1 7 8 4
-Argument "b" defaulted
-Argument "c" defaulted
1 7 8 4
-Argument "c" defaulted
1 2 8 4
-Argument "b" defaulted
1 7 7 8

Notice that argument checks are run in the order they are listed in the decorator because Python retains
insertion order in dictionaries. On validation errors, we get an exception as before unless the -O
command-line argument is passed to Python to disable the decorator’s logic. Here’s the scene when one
of the method-test lines is uncommented:

$ python3 rangetest_test.py
-------Functions--------
Pat is 40 years old
Pat is 40 years old
birthday = 8/31/2024
--------Methods---------
sue=>120000, bob=>110000
TypeError: giveRaise argument "percent" not in 0.0..1.0

$ python3 -O rangetest_test.py
…no error messages or default traces…
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Implementation Details
This range-tester decorator’s code relies on both introspection APIs and subtle constraints of argument
passing. To be fully general, we could try to mimic Python’s argument-matching logic in its entirety to
see which names have been passed in which modes, but that’s too much complexity for our tool and is
prone to change over time. It would be better if we could somehow match the names of testable argu‐
ments given to the decorator against the names of actual arguments expected by the function to deter‐
mine how the former map to the latter during a given call.

Function introspection
It turns out that the introspection API available on function objects and their associated code objects
has exactly the tool we need. This API was briefly introduced in Chapter 19, but we’ve actually put it to
use here. The set of expected argument names is simply the first N variable names attached to a func‐
tion’s code object:

>>> def func(a, b, c, e=True, f=None):       # Args: three required, two defaults
        x = 1                                # Plus two more local variables
        y = 2

>>> code = func.__code__                     # Code object of function object
>>> code.co_nlocals
7
>>> code.co_varnames                         # All local variable names
('a', 'b', 'c', 'e', 'f', 'x', 'y')
>>> code.co_varnames[:code.co_argcount]      # <== First N locals are expected args
('a', 'b', 'c', 'e', 'f')

And as usual, starred-argument names in the call proxy allow it to collect arbitrarily many arguments to
be matched against the expected arguments so obtained from the function’s introspection API:

>>> def catcher(*pargs, **kargs): print(f'{pargs}, {kargs}')

>>> catcher(1, 2, 3, 4, 5)
(1, 2, 3, 4, 5), {}
>>> catcher(1, 2, c=3, d=4, e=5)             # Arguments at calls
(1, 2), {'d': 4, 'e': 5, 'c': 3}

Run a dir call on function and code objects for more details.

Argument assumptions
Given the decorated function’s set of expected argument names, the solution relies upon two constraints
on argument passing order imposed by Python and covered in Chapter 18:

• At the call, all positional arguments appear before all keyword arguments.
• In the def, all nondefault arguments appear before all default arguments.

That is, a nonkeyword argument cannot generally follow a keyword argument at a call, and a nonde‐
fault argument cannot follow a default argument at a definition. All name=value syntax must appear
after any simple name in both places. As we’ve also learned, Python matches argument values passed by
position to argument names in function headers from left to right, such that these values always match
the leftmost names in headers. Keywords match by name instead, and a given argument can receive
only one value.
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To simplify our work, we can also make the assumption that a call is valid in general—that is, that all
arguments either will receive values (by name or position) or will be omitted intentionally to pick up
defaults. This assumption won’t necessarily hold because the function has not yet actually been called
when the wrapper logic tests validity—the call may still fail later when invoked by the wrapper layer due
to incorrect argument passing. As long as that doesn’t cause the wrapper to fail any worse, though, we
can ignore the validity of the call. This helps because validating calls before they are actually made
would require us to emulate Python’s argument-matching algorithm in full.

Matching algorithm
Now, given these constraints and assumptions, we can allow for both keywords and omitted default
arguments in the call with this algorithm. When a call is intercepted, we can make the following
assumptions and deductions:

1. Let N be the number of passed positional arguments, obtained from the length of the *pargs tuple.
2. All N positional arguments in *pargs must match the first N expected arguments obtained from

the function’s code object. This is true per Python’s call ordering rules, outlined earlier, since all
positionals precede all keywords in a call.

3. To obtain the names of arguments actually passed by position, we can slice the list of all expected
arguments up to the length N of the *pargs passed positionals tuple.

4. Any arguments after the first N expected arguments either were passed by keyword or were defaul‐
ted by omission at the call.

5. For each argument name to be validated by the decorator:
a. If the name is in **kargs, it was passed by name—indexing **kargs gives its passed value.
b. If the name is in the first N expected arguments, it was passed by position—its relative position

in the expected list gives its relative position in *pargs.
c. Otherwise, we can assume it was omitted in the call and defaulted and need not be checked.

In other words, we can skip tests for arguments that were omitted in a call by assuming that the first N
actually passed positional arguments in *pargs must match the first N argument names in the list of all
expected arguments, and that any others must either have been passed by keyword and thus be in
**kargs, or have been defaulted. Under this scheme, the decorator will simply skip any argument to be
checked that was omitted between the rightmost positional argument and the leftmost keyword argu‐
ment, between keyword arguments, or after the rightmost positional in general. Trace through the dec‐
orator and its test script to see how this is realized in code.

Open Issues
Although our range-testing tool works as planned, three caveats remain—it doesn’t detect invalid calls,
doesn’t handle some arbitrary-argument signatures, and doesn’t fully support nesting. Improvements
may require extension or altogether different approaches. Here’s a quick rundown of the issues.

Invalid calls
First, as mentioned earlier, calls to the original function that are not valid still fail in our final decorator.
The following, for example, both trigger TypeError exceptions for a missing positional argument a:
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omitargs()
omitargs(d=8, c=7, b=6)

These only fail, though, where we try to invoke the original function, at the end of the wrapper. While
we could try to imitate Python’s argument matching to avoid this, there’s not much reason to do so—
since the call would fail at this point anyhow, we might as well let Python’s own argument-matching
logic detect the problem for us.

Arbitrary arguments
Second, although our final version handles positional arguments, keyword arguments, and omitted
defaults, it still doesn’t do anything explicit about *pargs and **kargs starred-argument names that
may be used in a decorated function def that accepts arbitrarily many arguments itself. This is probably
moot for our purposes, though:

• If an extra keyword argument is passed, its name will show up in **kargs and can be tested nor‐
mally if mentioned to the decorator.

• If an extra keyword argument is not passed, its name won’t be in either **kargs or the sliced
expected positionals list, and it will thus not be checked—it is treated as though it were defaulted,
even though it is really an optional extra argument.

• If an extra positional argument is passed, there’s no way to reference it in the decorator anyhow—
its name won’t be in either **kargs or the sliced expected arguments list, so it will simply be skip‐
ped. Because such arguments are not listed in the function’s definition, there’s no way to map a
name given to the decorator back to an expected relative position.

In other words, as it is the code supports testing arbitrary keyword arguments by name, but not arbi‐
trary positionals that are unnamed and hence have no set position in the function’s argument signature.
In terms of the function object’s API, here’s the effect of these tools in decorated functions:

>>> def func(*pargs, **kargs): pass
>>> code = func.__code__
>>> code.co_nlocals, code.co_varnames
(2, ('pargs', 'kargs'))
>>> code.co_argcount, code.co_varnames[:code.co_argcount]
(0, ())

>>> def func(a, b, *pargs, **kargs): pass
>>> code = func.__code__
>>> code.co_argcount, code.co_varnames[:code.co_argcount]
(2, ('a', 'b'))

Because starred-argument names show up as locals but not as expected arguments, they won’t be a fac‐
tor in our matching algorithm—names preceding them in function headers can be validated as usual,
but not any extra positional arguments passed. In principle, we could extend the decorator’s interface to
support *pargs in the decorated function, too, for the rare cases where this might be useful (e.g., a spe‐
cial argument name with a test to apply to all arguments in *pargs beyond the length of the expected
arguments list), but we’ll pass on such an extension here.

Also, bear in mind that this pertains to values in starred collectors in def headers only; given that starred
unpackings in calls are flattened before they ever reach our decorator, they are irrelevant to its code. To
borrow a pathological example from Chapter 18:
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>>> def f(a, b, c, d, e, f, g, h, i): pass
>>> f.__code__.co_varnames[:f.__code__.co_argcount]
('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i')

>>> def f(*p, **k): print(p, k)
>>> f(*[1], 2, *[3], 4, f=6, *[5], **dict(g=7), h=8, **{'i': 9})
(1, 2, 3, 4, 5) {'f': 6, 'g': 7, 'h': 8, 'i': 9}

The call’s stars here are resolved before the function is started. Because our decorator finds values passed
to argument names by indexing keywords and mapping expected to actual positionals, it can remain
blissfully ignorant of stars in the call and will work normally in this example (though, to be fair, “nor‐
mally” may be an exaggeration here).

Decorator nesting
Finally, and perhaps most subtly, this code’s approach does not fully support the use of decorator nesting
to combine steps. Because it analyzes arguments using names in function definitions, and the names of
the call proxy function returned by a nested decoration won’t correspond to argument names in either
the original function or decorator arguments, it does not fully support use in nested mode.

Technically, when nested, only the most deeply nested appearance’s validations are run in full; all other
nesting levels run tests on arguments passed by keyword only. Trace the code to see why; because the
onCall proxy’s call signature expects no named positional arguments, any to-be-validated arguments
passed to it by position are treated as if they were omitted and hence defaulted and are thus skipped.

This may be inherent in this tool’s approach—proxies change the argument name signatures at their
levels, making it impossible to directly map names in decorator arguments to positions in passed argu‐
ment sequences. When proxies are present, argument names ultimately apply to keywords only; by con‐
trast, the first-cut solution’s argument positions may support proxies better but do not fully support
keywords.

In lieu of this nesting capability, we’ll generalize this decorator to support multiple kinds of validations
in a single decoration in an end-of-chapter quiz solution, which also gives examples of the nesting limi‐
tation in action. Since we’ve already neared the space allocation for this example, though, if you care
about these or any other further improvements, you’ve officially crossed over into the realm of sug‐
gested exercises.

Decorator Arguments Versus Function Annotations
In closing, Python’s annotation feature introduced in Chapter 19 could also provide an alternative to the
decorator arguments used by our example to specify range tests. As we learned earlier, annotations
allow us to associate expressions with arguments and return values by coding them in the def header
line itself; Python collects annotations in a dictionary and attaches it to the annotated function.

We could use this in our example to code range limits in the header line instead of in decorator argu‐
ments. We would still need a function decorator to wrap the function in order to intercept later calls,
but we would essentially trade decorator argument syntax:

@rangetest(a=(1, 5), c=(0.0, 1.0))
def func(a, b, c):                         # func = rangetest(...)(func)
    print(a + b + c)

for annotation syntax like this:
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@rangetest
def func(a:(1, 5), b, c:(0.0, 1.0)):
    print(a + b + c)

That is, the range constraints would be moved into the function itself instead of being coded externally
in a decorator line. Example 39-27 illustrates the structure of the resulting decorators under both
schemes in incomplete skeleton code for brevity. The decorator-arguments code pattern is that of our
complete solution shown earlier; the annotations alternative requires one less level of nesting because it
doesn’t need to retain decorator arguments as state.

Example 39-27. decoargs-vs-annotation.py
# Using decorator arguments

def rangetest(**argchecks):
    def onDecorator(func):
        def onCall(*pargs, **kargs):
            print(argchecks)
            for check in argchecks:
                pass                         # Add validation code here
            return func(*pargs, **kargs)
        return onCall
    return onDecorator

@rangetest(a=(1, 5), c=(0.0, 1.0))
def func(a, b, c):                           # func = rangetest(...)(func)
    print(a + b + c)

func(1, 2, c=3)                              # Runs onCall, argchecks in scope

# Using function annotations

def rangetest(func):
    def onCall(*pargs, **kargs):
        argchecks = func.__annotations__
        print(argchecks)
        for check in argchecks:
            pass                             # Add validation code here
        return func(*pargs, **kargs)
    return onCall

@rangetest
def func(a:(1, 5), b, c:(0.0, 1.0)):         # func = rangetest(func)
    print(a + b + c)

func(1, 2, c=3)                              # Runs onCall, annotations on func

When run, both schemes have access to the same validation test information but in different forms—
the decorator argument version’s information is retained in an argument in an enclosing scope, and the
annotation version’s information is retained in an attribute of the function itself:

$ python3 decoargs-vs-annotation.py
{'a': (1, 5), 'c': (0.0, 1.0)}
6
{'a': (1, 5), 'c': (0.0, 1.0)}
6

Fleshing out the rest of the annotation-based version is left as a suggested exercise; its code would be
almost identical to that of our earlier solution because range-test information is simply on the function
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instead of in an enclosing scope. Really, all this buys us is a different user interface for our tool—it will
still need to match argument names against expected argument names to obtain relative positions as
before.

In fact, using annotation instead of decorator arguments in this example actually limits its utility. By
moving the validation specifications into the def header, we essentially commit the function to a single
role—since annotation directly allows us to code only one expression per argument, it can have only
one purpose. For instance, we cannot use range-test annotations for any other role (including the
optional and unused type hinting of Chapter 6).

By contrast, because decorator arguments are coded outside the function itself, they are both easier to
remove and more general—the code of the function itself does not imply a single decoration purpose.
Crucially, by nesting decorators with arguments, we can often apply multiple augmentation steps to the
same function; annotation directly supports only one. With decorator arguments, the function itself
also retains a simpler, normal appearance.

Still, if you have a single purpose in mind, the choice between annotation and decorator arguments is
largely stylistic and subjective. As is so often true in life, one person’s decoration or annotation may well
be another’s syntactic clutter.

Chapter Summary
In this chapter, we explored decorators—both the function and class varieties. As we learned, decora‐
tors are a way to insert code to be run automatically when a function or class is defined. When a deco‐
rator is used, Python rebinds a function or class name to the callable object that the decorator returns.
This hook allows us to manage functions and classes themselves or later calls to them. By adding a layer
of wrapper logic to catch later calls, we can augment both function calls and instance interfaces. Deco‐
rators provide an explicit and uniform way to achieve such goals.

As we also learned, class decorators can be used to manage classes themselves rather than just their
instances. Because this functionality overlaps with metaclasses—the topic of the next and final technical
chapter—you’ll have to read on for the conclusion to this story and that of this book at large.

First, though, let’s work through the following quiz. Because this chapter was mostly focused on its
examples, the quiz will ask you to modify some of its examples’ code in order to review their concepts.
Both the examples’ code and the quiz’s solutions are located in the book’s examples package (see the
Preface for access pointers). Look for the solutions’ code there in this chapter’s _QuizAnswers subfolder.
If you’re pressed for time, you’re welcome to jump right into studying the solutions; programming is
often as much about reading code as writing it.

Test Your Knowledge: Quiz
1. Method decorators: As mentioned in one of this chapter’s notes, the timerdeco2.py module’s call-

timer decorator that we wrote in Example 39-10 of “Adding Decorator Arguments” on page 1055
can be applied only to simple functions because it uses a nested class with a __call__ operator-
overloading method to catch calls. This structure does not work for a class’s methods because the
decorator instance is passed to self, not the subject-class instance. Rewrite this decorator so that it
can be applied to both simple functions and methods in classes, and test it on both functions and
methods. (Hint: see “Class Pitfall: Decorating Methods” on page 1048 for pointers.) Note that you
will probably need to use function-object attributes to keep track of total time, since you won’t have
a nested class for state retention and can’t access nonlocals from outside the decorator code.
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2. Class decorators: The Public/Private class decorators we wrote in module access2.py of
Example 39-18 in this chapter’s first case study example will add performance costs to every
attribute fetch in a decorated class. Although we could simply delete the @ decoration line to gain
speed, we could also augment the decorator itself to check the __debug__ switch and perform no
wrapping at all when the –O Python flag is passed on the command line—just as we did for the
argument range-test decorators. That way, we can speed our program without changing its source
via command-line arguments (python –O main.py). While we’re at it, we could also use one of the
mix-in superclass techniques we studied to catch a few built-in operations too. Code and test these
two extensions.

3. Generalized argument validations: The function and method decorator we wrote in rangetest.py of
Example 39-25 checks that passed arguments are in a valid range, but the same code pattern could
apply to similar goals such as argument type testing and possibly more. Generalize the range tester
so that its single code base can be used for multiple kinds of argument validations. Passed-in valida‐
tion functions may be the simplest solution given the coding structure here, though subclasses that
provide expected methods can often provide similar generalization routes as well. This is substan‐
tially challenging, so be sure to see the solution for tips.

Test Your Knowledge: Answers
As noted, coding solutions for this quiz are in this chapter’s _QuizAnswers subfolder of the book exam‐
ples package. Each question has its own subfolder there for its files, with a _Notes.txt plain-text file giv‐
ing background info. This edition opted to move these solutions online instead of listing them here
because it saves about 10 pages and because this internet thing just might take off after all.
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