
CHAPTER 38

Managed Attributes

This chapter expands on the attribute interception techniques introduced earlier, introduces another,
and employs them in a handful of larger examples. Like everything in this part of the book, this chapter
is classified as an advanced topic and optional reading, because most applications programmers don’t
need to care about the material discussed here—they can fetch and set attributes on objects without
concern for attribute implementations.

Especially for tools builders, though, managing attribute access can be an important part of flexible
APIs. Moreover, an understanding of the descriptor model covered here can make related tools such as
slots and properties more tangible and may even be required reading if it appears in code you must use.

Why Manage Attributes?
Object attributes are central to most Python programs—they are where we often store information
about the entities our scripts process. Normally, attributes are simply names for objects; a person’s name
attribute, for example, might be a simple string, fetched and set with basic attribute syntax:

person.name                 # Fetch attribute value
person.name = value         # Change attribute value

In most cases, the attribute lives in the object itself or is inherited from a class from which it derives.
That basic model suffices for most programs you will write in your Python career.

Sometimes, though, more flexibility is required. Suppose you’ve written a program to use a name
attribute directly, but then your requirements change—for example, you decide that names must be
validated or mutated with program logic when accessed. It’s straightforward to code methods to man‐
age access to the attribute’s value (valid and transform are abstract and hypothetical here):
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class Person:
    def getName(self):
        if not valid():
            raise TypeError('cannot fetch name')
        else:
            return self.name.transform()

    def setName(self, value):
         if not valid(value):
            raise TypeError('cannot change name')
        else:
            self.name = transform(value)

person = Person()
person.getName()
person.setName('value')

The problem with this is that it also requires changing all the places where names are used in the entire
program—a possibly nontrivial task. Moreover, this approach requires the program to be aware of how
values are exported: as simple names or called methods. If you begin with a method-based interface to
data, clients are immune to changes; if you do not, changes can become problematic.

This issue can crop up more often than you might expect. The value of a cell in a spreadsheet-like pro‐
gram, for instance, might begin its life as a simple discrete value but later mutate into an arbitrary cal‐
culation. Since an object’s interface should be flexible enough to support such future changes without
breaking existing code, switching to methods later is less than ideal.

Inserting Code to Run on Attribute Access
A better solution would allow you to run code automatically on attribute access if needed. That’s one of
the main roles of managed attributes—they provide ways to add attribute accessor logic after the fact.
More generally, they support arbitrary attribute usage modes that go beyond simple data storage.

At various points in this book, we’ve met Python tools that allow our scripts to dynamically compute
attribute values when fetching them and validate or change attribute values when storing them. In this
chapter, we’re going to focus more deeply on the tools already introduced, explore other tools in this
category, and study some larger use-case examples in this domain. Specifically, this chapter presents
four accessor techniques:

1. The property built-in, for specifying methods to handle access to a specific attribute
2. The __get__ and __set__ descriptor methods, for handling access to a specific attribute and the

basis for other tools such as properties and slots
3. The __getattr__ and __setattr__ methods, for handling undefined attribute fetches and all

attribute assignments
4. The __getattribute__ method, for handling all attribute fetches

We met these tools in Chapters 30 and 32 briefly, and in some cases, hardly at all. As you’ll see here, all
four techniques share goals to some degree, and it’s usually possible to code a given problem using any
one of them.
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That said, they also differ in some important ways. For example, the last two techniques listed here
apply to specific attributes, whereas the first two are generic enough to be used by delegation-based
proxy classes that must route arbitrary attributes to wrapped objects. As you’ll find, all four schemes
also differ in both complexity and aesthetics in ways you must see in action to judge for yourself.

Besides studying the specifics behind these four attribute interception techniques, this chapter also
presents an opportunity to explore programs larger than most we’ve seen elsewhere in this book. The
CardHolder case study at the end, for example, should serve as a self-study example of larger classes in
action. We’ll also be using some of the techniques outlined here in the next chapter to code decorators,
so be sure you have at least a general understanding of these topics before you move on.

Properties
Up first, the property protocol allows us to route a specific attribute’s get, set, and delete operations to
functions or methods we provide, enabling us to insert code to be run automatically on attribute
accesses, intercept attribute deletions, and provide documentation for attributes if desired.

As introduced in Chapter 32, properties are created with the property built-in and are assigned to class
attributes, just like method functions. Accordingly, they are inherited by subclasses and instances, like
any other class attributes. Their access-interception functions are provided with the self instance argu‐
ment, which grants access to state information and class attributes available on the subject instance.

A property manages a single, specific attribute; although it can’t catch all attribute accesses generically, it
allows us to control both fetch and assignment accesses and enables us to change an attribute from sim‐
ple data to a computation freely without breaking existing code. As you’ll see, properties are strongly
related to descriptors; in fact, they are essentially a restricted form of them.

The Basics
A property is created by assigning the result of a built-in function to a class attribute:

attribute = property(fget, fset, fdel, doc)

None of this built-in’s arguments are required, and all default to None if not passed. For the first three,
this None means that the corresponding operation is not supported, and attempting it will raise an
AttributeError exception automatically.

When these arguments are used, we pass fget a function for intercepting attribute fetches, fset a func‐
tion for assignments, and fdel a function for attribute deletions. Technically, all three of these argu‐
ments accept any callable, including a class’s method, having a first argument to receive the instance
being qualified. When later invoked, the fget function returns the computed attribute value, fset and
fdel return nothing (really, None), and all three may raise exceptions to reject access requests.

The doc argument receives a documentation string for the attribute if desired. If omitted, the property
copies the docstring of the fget function, which, as usual, defaults to None.

This built-in property call returns a property object, which we assign to the name of the attribute to be
managed in the class scope, where it will be inherited by every instance. As you’ll learn ahead, this
assignment can be automated by @ decorator syntax, though its distributed usage may seem awkward
for set and delete methods. However assigned, later accesses to the attribute automatically invoke the
property’s handlers.
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A First Example
To demonstrate how this translates to working code, the class in Example 38-1 uses a property to trace
access to an attribute named name; the actual stored data is named _name so it does not clash with the
property.

Example 38-1. prop-person.py
class Person: 
    def __init__(self, name):
        self._name = name

    def getName(self):
        print('fetch...')
        return self._name

    def setName(self, value):
        print('change...')
        self._name = value

    def delName(self):
        print('remove...')
        del self._name

    name = property(getName, setName, delName, 'name property docs')

sue = Person('Sue Jones')           # sue has a managed attribute
print(sue.name)                     # Runs getName
sue.name = 'Susan Jones'            # Runs setName
print(sue.name)
del sue.name                        # Runs delName

print('-'*20)
bob = Person('Bob Smith')           # bob inherits property too
print(bob.name)
print(Person.name.__doc__)          # Or help(Person.name)

This particular property doesn’t do much—it simply intercepts and traces an attribute—but it serves to
demonstrate the protocol. When this code is run, two instances inherit the property, just as they would
any other attribute attached to their class. However, accesses to their name attribute are caught and man‐
aged by the code we provide:

$ python3 prop-person.py
fetch...
Sue Jones
change...
fetch...
Susan Jones
remove...
--------------------
fetch...
Bob Smith
name property docs

Like all class attributes, properties are inherited by both instances and lower subclasses. If we change
our example as follows, for instance:
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class Super:
    …the original Person class code…
    name = property(getName, setName, delName, 'name property docs')

class Person(Super):
    pass                            # Properties are inherited (class attrs)

sue = Person('Sue Jones')
…rest unchanged…

the output is the same—the Person subclass inherits the name property from Super, and the sue
instance gets it from Person. In terms of inheritance, properties work the same as normal methods;
because they have access to the self instance argument, they can access instance state information and
methods irrespective of subclass depth, as the next section further demonstrates.

Computed Attributes
The example in the prior section simply traces attribute accesses. Usually, though, properties do much
more—computing the value of an attribute dynamically when fetched, for instance, as Example 38-2
illustrates.

Example 38-2. prop-computed.py
class PropSquare:
    def __init__(self, start):
        self.value = start

    def getX(self):                         # On attr fetch
        return self.value ** 2

    def setX(self, value):                  # On attr assign
        self.value = value

    X = property(getX, setX)                # No delete or docs

P = PropSquare(3)       # Two instances of class with property
Q = PropSquare(32)      # Each has different state information

print(P.X)              # 3 ** 2
P.X = 4
print(P.X)              # 4 ** 2
print(Q.X)              # 32 ** 2 (1024)

This class defines an attribute X that is accessed as though it were simple data, but really runs code to
compute its value when fetched. The net effect triggers an implicit method call. When the code is run,
the value is stored in the instance as state information, but each time we fetch it via the managed
attribute, its value is automatically squared:

$ python3 prop-computed.py
9
16
1024

Notice that we’ve made two different instances—because property methods automatically receive a self
argument, they have access to the state information stored in instances. In our case, this means the fetch
computes the square of the subject instance’s own data.
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Coding Properties with Decorators
Although we’re saving additional details until the next chapter, we introduced function decorator basics
earlier, in Chapter 32. Recall that the function decorator syntax:

@decorator
def func(args): …

is automatically translated to this equivalent by Python to rebind the function name to the result of the
decorator callable:

def func(args): …
func = decorator(func)

Because of this mapping, the property built-in can automatically serve as a decorator to define a func‐
tion that will run automatically when an attribute is fetched:

class Person:
    @property
    def name(self): ...             # Rebinds: name = property(name)

When run, the decorated method is automatically passed to the first argument of the property built-in.
This is really just alternative syntax for creating a property and rebinding the attribute name manually,
but may be seen as more explicit in this role:

class Person:
    def name(self): …
    name = property(name)           # Manual equivalent to @property

Setter and deleter decorators
The preceding works naturally for property get functions, but what about other accesses? In full detail,
property objects also have getter, setter, and deleter methods that assign the corresponding prop‐
erty accessor methods and return a copy of the property itself. We can use these to specify components
of properties by decorating normal methods, too, though the getter component (along with attributes
docs) is usually filled in automatically by the act of creating the property itself. Example 38-3 demos the
basics.

Example 38-3. prop-person-deco.py
class Person:
    def __init__(self, name):
        self._name = name

    @property
    def name(self):                 # name = property(name)
        'name property docs'
        print('fetch...')
        return self._name

    @name.setter
    def name(self, value):          # name = name.setter(name)
        print('change...')
        self._name = value

    @name.deleter
    def name(self):                 # name = name.deleter(name)
        print('remove...')
        del self._name
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sue = Person('Sue Jones')           # sue has a managed attribute
print(sue.name)                     # Runs name getter (def name 1)
sue.name = 'Susan Jones'            # Runs name setter (def name 2)
print(sue.name)
del sue.name                        # Runs name deleter (def name 3)

print('-'*20)
bob = Person('Bob Smith')           # bob inherits property too
print(bob.name)
print(Person.name.__doc__)          # Or help(Person.name)

In fact, this code is equivalent to the first example in this section—decoration is just an alternative way
to code properties in this case. When it’s run, the results are the same:

$ python3 prop-person-deco.py
fetch...
Sue Jones
change...
fetch...
Susan Jones
remove...
--------------------
fetch...
Bob Smith
name property docs

Compared to manual assignment of property results, using decorators to properties in this example
requires just three extra lines of code—a seemingly negligible difference. As is so often the case with
alternative tools, though, the choice between the two techniques is largely subjective.

Descriptors
Very briefly previewed in Chapter 32, descriptors provide an alternative way to intercept attribute
access; they are strongly related to the properties discussed in the prior section. Really, a property is a
kind of descriptor—technically speaking, the property built-in is just a simplified way to create a spe‐
cific type of descriptor that runs method functions on attribute accesses. In fact, descriptors are the
underlying implementation mechanism for a variety of class tools, including both properties and slots,
and play other internal roles in Python that we can safely skip here.

Functionally speaking, the descriptor protocol allows us to route a specific attribute’s get, set, and delete
operations to methods of a separate class’s instance object that we provide. This allows us to insert code
to be run automatically on attribute fetches and assignments, intercept attribute deletions, and provide
documentation for the attributes if desired.

Descriptors are created as independent classes, and they are assigned to class attributes just like method
functions. Like any other class attribute, they are inherited by subclasses and instances. Their access-
interception methods are provided with both a self for the descriptor instance itself as well as the
instance of the client class whose attribute references the descriptor object. Because of this, they can
retain and use state information of their own, as well as state information of the subject instance. For
example, a descriptor may call methods available in the client class, as well as descriptor-specific meth‐
ods it defines.

Like a property, a descriptor manages a single, specific attribute; although it can’t catch all attribute
accesses generically, it provides control over both fetch and assignment accesses and allows us to
change an attribute name freely from simple data to a computation without breaking existing code. If
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this sounds like properties, it’s because it is: as you shall see, properties can be coded as descriptors
directly.

Unlike properties, though, descriptors provide a more general tool. For instance, because they are
coded as normal classes, descriptors have their own state, may participate in descriptor inheritance
hierarchies, can use composition to aggregate objects, and provide a natural structure for coding inter‐
nal methods and attribute documentation strings.

The Basics
As mentioned, descriptors are coded as separate classes and provide specially named accessor methods
for the attribute access operations they wish to intercept—get, set, and deletion methods in the descrip‐
tor class are automatically run when the attribute assigned to the descriptor class instance is accessed in
the corresponding way:

class Descriptor:
    "docstring goes here"
    def __get__(self, instance, owner): …        # Return attr value
    def __set__(self, instance, value): …        # Return nothing (None)
    def __delete__(self, instance): …            # Return nothing (None)

Classes with any of these methods are considered descriptors, and their methods are special when one
of their instances is assigned to another class’s attribute—when the attribute is accessed, these methods
are automatically invoked.

If any of these methods are absent, it generally means that the corresponding type of access is not sup‐
ported. Unlike properties, however, omitting a __set__ allows the descriptor attribute’s name to be
assigned and thus redefined in an instance, thereby hiding the descriptor—to make an attribute read-
only, you must define __set__ to catch assignments and raise an exception.

Descriptors with __set__ methods also have some special-case implications for inheritance that we’ll
largely defer until Chapter 40’s coverage of metaclasses and the complete inheritance specification. In
short, a descriptor with a __set__ is known formally as a data descriptor and is given precedence over
other names located by normal inheritance rules. The inherited descriptor for attribute __class__, for
example, overrides the same name in an instance’s namespace dictionary. This also works to ensure that
data descriptors you code in your own classes take precedence over others.

Descriptor method arguments
Before we code anything realistic, let’s take a brief look at some fundamentals. All three descriptor
methods outlined in the prior section are passed both the descriptor class instance (self) and the
instance of the client class to which the descriptor instance is attached (instance).

The __get__ access method additionally receives an owner argument, specifying the class to which the
descriptor instance is attached. Its instance argument is either the instance through which the attribute
was accessed (for instance.attr), or None when the attribute is accessed through the owner class
directly (for class.attr). The former of these generally computes a value for instance access, and the
latter usually returns self if descriptor object access is supported.

For example, in the following REPL session, when X.attr is fetched, Python automatically runs the
__get__ method of the Descriptor class instance to which the Subject.attr class attribute is assigned:
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>>> class Descriptor:                  
        def __get__(self, instance, owner):
            print(self, instance, owner, sep='\n')

>>> class Subject:                           
        attr = Descriptor()            # Descriptor instance is class attr

>>> X = Subject()
>>> X.attr
<__main__.Descriptor object at 0x104bc9b20>
<__main__.Subject object at 0x104b8a570>
<class '__main__.Subject'> 

>>> Subject.attr
<__main__.Descriptor object at 0x104bc9b20>
None
<class '__main__.Subject'>

Notice the arguments automatically passed in to the __get__ method in the first attribute fetch—when
X.attr is fetched, it’s as though the following translation occurs (though the Subject.attr here doesn’t
invoke __get__ again as it normally would):

X.attr  =>  Descriptor.__get__(Subject.attr, X, Subject)

The descriptor knows it is being accessed directly when its instance argument is None.

Read-only descriptors
As mentioned earlier, unlike properties, simply omitting the __set__ method in a descriptor isn’t
enough to make an attribute read-only because the descriptor name can be assigned in an instance. In
the following, the attribute assignment to X.a stores a in the instance object X, thereby hiding the
descriptor stored in class C:

>>> class D:
        def __get__(*args): print('get')

>>> class C:
        a = D()                     # Attribute "a" is a descriptor instance

>>> X = C()
>>> X.a                             # Runs inherited descriptor __get__
get
>>> C.a
get
>>> X.a = 99                        # Stored on X, hiding C.a!
>>> X.a
99
>>> list(X.__dict__.keys())
['a']
>>> Y = C()
>>> Y.a                             # Y still inherits descriptor
get
>>> C.a
get

This is the way all instance attribute assignments work in Python, and it allows classes to selectively
override class-level defaults in their instances. To make a descriptor-based attribute read-only, catch the
assignment in the descriptor class and raise an exception to prevent attribute assignment—when
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assigning an attribute that is a descriptor, Python effectively bypasses the normal instance-level assign‐
ment behavior and routes the operation to the descriptor object:

>>> class D:
        def __get__(*args): print('get')
        def __set__(*args): raise AttributeError('cannot set')

>>> class C:
        a = D()

>>> X = C()
>>> X.a                                 # Routed to C.a.__get__
get
>>> X.a = 99                            # Routed to C.a.__set__
AttributeError: cannot set

The deletion trio: Be careful not to confuse the descriptor __delete__ method
with the general __del__ method. The former is called on attempts to delete the
managed attribute name on an instance of the owner class; the latter is the gen‐
eral instance destructor method, run when an instance of any kind of class is
about to be garbage-collected. Descriptor __delete__ is more closely related to
the __delattr__ generic attribute deletion method we’ll study later in this chap‐
ter. See Chapter 30 for more on operator-overloading methods like __del__.

A First Example
To see how this all comes together in more realistic code, let’s get started with the same first example we
wrote for properties. Example 38-4 defines a descriptor that intercepts access to an attribute named
name in its clients. Its methods use their instance argument to access state information in the subject
instance, where the name string is actually stored.

Example 38-4. desc-person.py
class Name:
    'name descriptor docs'

    def __get__(self, instance, owner):
        print('fetch...')
        return instance._name

    def __set__(self, instance, value):
        print('change...')
        instance._name = value

    def __delete__(self, instance):
        print('remove...')
        del instance._name

class Person:
    def __init__(self, name):
        self._name = name

    name = Name()                       # Assign descriptor to attr

sue = Person('Sue Jones')               # sue has a managed attribute
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print(sue.name)                         # Runs Name.__get__
sue.name = 'Susan Jones'                # Runs Name.__set__
print(sue.name)
del sue.name                            # Runs Name.__delete__

print('-'*20)
bob = Person('Bob Smith')               # bob inherits descriptor too
print(bob.name)
print(Name.__doc__)                     # Or help(Name)

Notice in this code how we assign an instance of our descriptor class to a class attribute in the client
class; because of this, it is inherited by all instances of the class, just like a class’s methods. Really, we
must assign the descriptor to a class attribute like this—it won’t work if assigned to a self instance
attribute instead. When the descriptor’s __get__ method is run, it is passed three objects to define its
context:

• self is the Name class instance.
• instance is the Person class instance.
• owner is the Person class.

When this code is run, the descriptor’s methods intercept accesses to the attribute, much like the prop‐
erty version. In fact, the output is the same again:

$ python3 desc-person.py
fetch...
Sue Jones
change...
fetch...
Susan Jones
remove...
--------------------
fetch...
Bob Smith
name descriptor docs

Also like in the property example, our descriptor class instance is a class attribute and thus is inherited
by all instances of the client class and any subclasses. If we change the Person class in our example to
the following, for instance, the output of our script is the same:

…
class Super:
    def __init__(self, name):
        self._name = name

    name = Name()

class Person(Super):                     # Descriptors are inherited (class attrs)
   pass
…

Also, note that when a descriptor class is not useful outside the client class, it’s perfectly reasonable to
embed the descriptor’s definition inside its client syntactically. Here’s what our example looks like if we
use a nested class:
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class Person:
    def __init__(self, name):
        self._name = name

    class Name:                                 # Using a nested class
        'name descriptor docs'

        def __get__(self, instance, owner):
            …same…

        def __set__(self, instance, value):
            …same…

        def __delete__(self, instance):
            …same…

    name = Name()

When coded this way, Name becomes a local variable in the scope of the Person class statement, such
that it won’t clash with any names outside the class. This version works the same as the original—we’ve
simply moved the descriptor class definition into the client class’s scope—but the last line of the testing
code must change to fetch the docstring from its new location (per unlisted file desc-person-nested.py in
the example’s package):

…
print(Person.Name.__doc__)     # Differs: not Name.__doc__ outside class

Computed Attributes
As was the case when using properties, our first descriptor example of the prior section didn’t do much
—it simply printed trace messages for attribute accesses as a demo. In practice, descriptors can also be
used to compute attribute values each time they are fetched. Example 38-5 illustrates—it’s a rehash of
the same example we coded for properties but uses a descriptor to automatically square an attribute’s
value each time it is fetched.

Example 38-5. desc-computed.py
class DescSquare:
    def __init__(self, start):                  # Each desc has own state
        self.value = start

    def __get__(self, instance, owner):         # On attr fetch
        return self.value ** 2

    def __set__(self, instance, value):         # On attr assign
        self.value = value                      # No delete or docs

class Client1:
    X = DescSquare(3)          # Assign descriptor instance to class attr

class Client2:
    X = DescSquare(32)         # Another instance in another client class
                               # Could also code two instances in same class
c1 = Client1()
c2 = Client2()

print(c1.X)                    # 3 ** 2
c1.X = 4
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print(c1.X)                    # 4 ** 2
print(c2.X)                    # 32 ** 2 (1024)

When run, the output of this example is the same as that of the original property-based version, but
here a descriptor class object is intercepting the attribute accesses instead of a property:

$ python3 desc-computed.py
9
16
1024

Using State Information in Descriptors
If you closely study the two descriptor examples we’ve written so far, you might notice that they get
their information from different places—the first (the name attribute example) uses data stored on the
client instance, and the second (the attribute squaring example) uses data attached to the descriptor
object itself (a.k.a. self). In fact, descriptors can use both instance state and descriptor state, or any
combination thereof:

• Descriptor state is used to manage either data internal to the workings of the descriptor or data that
spans all instances. It can vary per attribute appearance (often per client class).

• Instance state records information related to and possibly created by the client class. It can vary per
client-class instance (that is, per application object).

In other words, descriptor state is per-descriptor data, and instance state is per-client-instance data. As
usual in OOP, you must choose state carefully. For example, you would not normally use descriptor state
to record employee names since each client instance requires its own value—if stored in the descriptor,
each client class instance will effectively share the same single copy. On the other hand, you would not
usually use instance state to record data pertaining to descriptor implementation internals—if stored in
each instance, there would be multiple varying copies.

Descriptor methods may use either state form, but descriptor state sometimes makes it unnecessary to
use special naming conventions to avoid name collisions in the instance for data that is not instance
specific. For example, the descriptor in Example 38-6 attaches information to its own instance, so it
doesn’t clash with that on the client class’s instance—but also shares that information between two cli‐
ent instances.

Example 38-6. desc-state-desc.py
class DescState:                           # Use descriptor state
    def __init__(self, value):
        self.value = value

    def __get__(self, instance, owner):    # On attr fetch
        print('DescState get')
        return self.value * 10

    def __set__(self, instance, value):    # On attr assign
        print('DescState set')
        self.value = value

# Client class
class CalcAttrs:
    X = DescState(2)                       # Descriptor class attr
    Y = 3                                  # Class attr
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    def __init__(self):
        self.Z = 4                         # Instance attr

obj = CalcAttrs()
print(obj.X, obj.Y, obj.Z)                 # X is computed, others are not
obj.X = 5                                  # X assignment is intercepted
CalcAttrs.Y = 6                            # Y reassigned in class
obj.Z = 7                                  # Z assigned in instance
print(obj.X, obj.Y, obj.Z)

obj2 = CalcAttrs()                         # But X uses shared data, like Y!
print(obj2.X, obj2.Y, obj2.Z)

This code’s internal value information lives only in the descriptor, so there won’t be a collision if the
same name is used in the client’s instance. Notice that only the descriptor attribute is managed here—
get and set accesses to X are intercepted, but accesses to Y and Z are not (Y is attached to the client class
and Z to the instance). When this code is run, X is computed when fetched, but its value is also the same
for all client instances because it uses descriptor-level state:

$ python3 desc-state-desc.py
DescState get
20 3 4
DescState set
DescState get
50 6 7
DescState get
50 6 4

It’s also feasible for a descriptor to store or use an attribute attached to the client class’s instance instead
of itself. Crucially, unlike data stored in the descriptor itself, this allows for data that can vary per client
class instance. The descriptor in Example 38-7 assumes the instance has an attribute _X attached by the
client class and uses it to compute the value of the attribute it represents.

Example 38-7. desc-state-inst.py
class InstState:                           # Using instance state
    def __get__(self, instance, owner):
        print('InstState get')             # Assume set by client class
        return instance._X * 10

    def __set__(self, instance, value):
        print('InstState set')
        instance._X = value

# Client class
class CalcAttrs:
    X = InstState()                        # Descriptor class attr
    Y = 3                                  # Class attr
    def __init__(self):
        self._X = 2                        # Instance attr
        self.Z  = 4                        # Instance attr

obj = CalcAttrs()
print(obj.X, obj.Y, obj.Z)                 # X is computed, others are not
obj.X = 5                                  # X assignment is intercepted
CalcAttrs.Y = 6                            # Y reassigned in class
obj.Z = 7                                  # Z assigned in instance
print(obj.X, obj.Y, obj.Z)
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obj2 = CalcAttrs()                         # But X differs now, like Z!
print(obj2.X, obj2.Y, obj2.Z)

Here, X is assigned to a descriptor as before that manages accesses. The new descriptor here, though,
has no information itself, but it uses an attribute assumed to exist in the instance—that attribute is
named _X, to avoid collisions with the name of the descriptor itself. When this version is run, the results
are similar, but the value of the descriptor attribute can vary per client instance due to the differing state
policy:

$ python3 desc-state-inst.py
InstState get
20 3 4
InstState set
InstState get
50 6 7
InstState get
20 6 4

Both descriptor and instance state have roles. In fact, this is a general advantage that descriptors have
over properties—because they have state of their own, they can easily retain data internally without
adding it to the namespace of the client instance object. As a summary, the following uses both state
sources—its self.data retains per-attribute information, while its instance.data can vary per client
instance:

>>> class DescBoth:
        def __init__(self, data):
            self.data = data
        def __get__(self, instance, owner):
            return f'{self.data}, {instance.data}'
        def __set__(self, instance, value):
            instance.data = value

>>> class Client:
        def __init__(self, data):
            self.data = data
        managed = DescBoth('hack')

>>> I = Client('code')
>>> I.managed                      # Show both data sources
'hack, code' 
>>> I.managed = 'HACK'             # Change instance data
>>> I.managed
'hack, HACK'

We’ll revisit the implications of this choice in a case study later in this chapter. Before we move on,
recall from Chapter 32’s coverage of slots that we can access “virtual” attributes like properties and
descriptors with tools like dir and getattr, even though they don’t exist in the instance’s namespace
dictionary. Whether you should access these this way probably varies per program—properties and
descriptors may run arbitrary computation and may be less obviously instance “data” than slots:

>>> I.__dict__
{'data': 'HACK'}
>>> [x for x in dir(I) if not x.startswith('__')]
['data', 'managed'] 

>>> getattr(I, 'data')
'HACK'
>>> getattr(I, 'managed')
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'hack, HACK'

>>> for attr in (x for x in dir(I) if not x.startswith('__')):
        print(f'{attr} => {getattr(I, attr)}')

data => HACK
managed => hack, HACK

The more generic __getattr__ and __getattribute__ tools we’ll explore soon are not designed to
support this functionality: because they have no class-level attributes, their “virtual” attribute names do
not appear in dir results (per Chapter 31, a __dir__ can provide a dir result, but it’s optional and
uncommon). In exchange, they are also not limited to specific attribute names coded as properties or
descriptors—tools that share even more than this behavior, as the next section explains.

How Properties and Descriptors Relate
As mentioned earlier, properties and descriptors are strongly related—the property built-in is just a
convenient way to create a descriptor. Now that you know how both work, you should also be able to
see that it’s possible to simulate the property built-in with a descriptor class, as demoed by
Example 38-8.

Example 38-8. prop-desc-equiv.py
class Property:
    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel                                  # Save unbound methods
        self.__doc__ = doc                                # or other callables

    def __get__(self, instance, instancetype=None):
        if instance is None:
            return self
        if self.fget is None:
            raise AttributeError("can't get attribute")
        return self.fget(instance)                        # Pass instance to self
                                                          # in property accessors
    def __set__(self, instance, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(instance, value)

    def __delete__(self, instance):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(instance)

class Person:
    def getName(self): 
        print('getName...')
    def setName(self, value): 
        print('setName...')
    name = Property(getName, setName)                     # Use like property()

x = Person()
x.name
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x.name = 'Pat'
del x.name

This Property class catches attribute accesses with the descriptor protocol and routes requests to func‐
tions or methods passed in and saved in descriptor state when the class’s instance is created. Attribute
fetches, for example, are routed from the Person class, to the Property class’s __get__ method, and
back to the Person class’s getName. With descriptors, this “just works”:

$ python3 prop-desc-equiv.py
getName...
setName...
AttributeError: can't delete attribute

Note that this descriptor class equivalent only handles basic property usage, though; to use @ decorator
syntax to also specify set and delete operations, we’d have to extend our Property class with setter and
deleter methods, which would save the decorated accessor function and return the property object
(self should suffice). Since the property built-in already does this, we’ll omit a formal coding of this
extension here.

Descriptors and slots and more
You can also probably now, at least in part, imagine how descriptors are used to implement Python’s
slots extension: instance attribute dictionaries are avoided by creating class-level descriptors that inter‐
cept slot name access and map those names to sequential storage space in the instance. Unlike the
explicit property call, though, much of the magic behind slots is orchestrated at class creation time
both automatically and implicitly when a __slots__ attribute is present in a class.

See Chapter 32 for more on slots—and why they’re not recommended except in pathological use cases.
Descriptors are also used for other class tools, but we’ll omit further internals details here; see Python’s
manuals and its open source code for more details.

Descriptor cliff-hangers: In Chapter 39, we’ll also make use of descriptors to
implement function decorators that apply to both functions and methods. As
you’ll see there, because descriptors receive both descriptor and subject class
instances they work well in this role, though nested functions are often a con‐
ceptually simpler solution. In addition, Chapter 39 deploys descriptors as one
way to intercept built-in operation method fetches, and Chapter 40 formalizes
data descriptors’ precedence in the full inheritance model noted earlier: with a
__set__, descriptors override other names and are thus fairly binding—they
cannot be hidden by names in instance dictionaries.

__getattr__ and __getattribute__
So far, we’ve studied properties and descriptors—tools for managing specific attributes. The
__getattr__ and __getattribute__ operator-overloading methods provide still other ways to inter‐
cept attribute fetches for class instances. Like properties and descriptors, they allow us to insert code to
be run automatically when attributes are accessed. As shown here, though, these two methods can also
be used in more general ways. Because they intercept arbitrary names, they can apply in broader roles,
but may also incur extra calls in some contexts, and are too dynamic to register in dir results without
help.
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This form of attribute-fetch interception comes in two flavors, coded with two different methods:

• __getattr__ is run for undefined attributes—because it is run only for attributes not stored on an
instance or inherited from one of its classes, its use is straightforward.

• __getattribute__ is run for every attribute—because it is all-inclusive, you must be cautious
when using this method to avoid recursive loops by passing attribute accesses to a superclass.

We met the first of these in Chapter 30. These two methods are representatives of a set of attribute
interception methods that also includes __setattr__ and __delattr__. Because these methods have
similar roles, though, we will generally treat them all as a single topic here.

Unlike properties and descriptors, these methods are usually considered part of Python’s operator-
overloading protocol—specially named methods of a class, inherited by subclasses, and run automati‐
cally when instances are used in the associated built-in operation (here, attribute fetch). Like all normal
methods of a class, they each receive a first self argument when called, giving access to both instance
state information and other methods of their hosting class.

The __getattr__ and __getattribute__ methods are also more generic than properties and descrip‐
tors—they can be used to intercept access to any (or even all) instance attribute fetches, not just a single
specific name. Because of this, these two methods are well suited to general delegation coding patterns
—they can implement wrapper (a.k.a. proxy) objects that manage all attribute accesses for an embedded
object. By contrast, we must define one property or descriptor for every attribute we wish to intercept.
As covered ahead, this delegation role is limited somewhat for built-in operations but still applies to all
named methods in a wrapped object’s interface.

Finally, these two methods are more narrowly focused than the alternatives we considered earlier: they
intercept attribute fetches only, not assignments. To also catch attribute changes by assignment, we
must code a __setattr__ method—an operator-overloading method run for every attribute assign‐
ment, which must take care to avoid recursive loops by routing attribute assignments through the
instance namespace dictionary or a superclass method. Although less common, we can also code a
__delattr__ overloading method (which must avoid looping in the same way) to intercept attribute
deletions. By contrast, properties and descriptors catch get, set, and delete operations by design.

__getattr__ and __setattr__ were introduced in Chapters 30 and 32, and __getattribute__ was
mentioned briefly in Chapter 32. Here, we’ll expand on their usage and study their roles in larger
contexts.

The Basics
In short, if a class defines or inherits the following methods, they will be run automatically when an
instance is used in the operation described by the comments to the right:

def __getattr__(self, name):         # On undefined attribute fetch [obj.name]
def __getattribute__(self, name):    # On all attribute fetch [obj.name]
def __setattr__(self, name, value):  # On all attribute assignment [obj.name=value]
def __delattr__(self, name):         # On all attribute deletion [del obj.name]

In these, self is the subject instance object as usual, name is the string name of the attribute being
accessed, and value is the object being assigned to the attribute. The two get methods normally return
an attribute’s value, and the other two return nothing (None). All can raise exceptions to signal prohibi‐
ted access.

1008 | Chapter 38: Managed Attributes



For example, to catch every attribute fetch, we can use either of the first two previous methods, and to
catch every attribute assignment we can use the third. The following uses __getattr__ for fetches:

class Catcher:
    def __getattr__(self, name):
        print('Get:', name)
    def __setattr__(self, name, value):
        print('Set:', name, value)

X = Catcher()
X.job                               # Prints "Get: job"
X.pay                               # Prints "Get: pay"
X.pay = 'bread'                     # Prints "Set: pay bread"

Using __getattribute__ works exactly the same in this specific case but has subtle looping potential
which we’ll take up in the next section:

class Catcher:                               # On all attribute fetches
    def __getattribute__(self, name):        # Works same as getattr here
        print('Get:', name)                  # But prone to loops in general
    …rest unchanged…

Such a coding structure can be used to implement the delegation design pattern we met earlier in Chap‐
ter 31. Because all attributes are routed to interception methods generically, we can validate and pass
them along to embedded, managed objects. As a refresher, the following class, borrowed from Chap‐
ter 31, traces every attribute fetch made to another object passed to the wrapper (proxy) class:

class Wrapper:
    def __init__(self, object):
        self.wrapped = object                    # Save object
    def __getattr__(self, attrname):
        print('Trace:', attrname)                # Trace fetch
        return getattr(self.wrapped, attrname)   # Delegate fetch

X = Wrapper([1, 2, 3])
X.append(4)                         # Prints "Trace: append"
print(X.wrapped)                    # Prints "[1, 2, 3, 4]"

There is no such analog for properties and descriptors, short of coding accessors for every attribute
present in every wrapped object. On the other hand, when such generality is not required, generic
accessor methods may incur additional calls for assignments in some contexts—a trade-off described in
Chapter 30 and mentioned in the context of the case study example we’ll explore at the end of this
chapter.

Avoiding loops in attribute interception methods
These methods are generally straightforward to use. Their most complex aspect is the potential for
looping (a.k.a. recursing). Because __getattr__ is called for undefined attributes only, it can freely fetch
other attributes within its own code. However, because __getattribute__ and __setattr__ are run for
all attributes, their code must be careful when accessing other attributes to avoid calling themselves
again and triggering a recursive loop.

For example, another attribute fetch run inside a __getattribute__ method’s code like the following
will trigger __getattribute__ again—and the code will usually loop until memory is exhausted:

    def __getattribute__(self, name):
        x = self.other                                # LOOPS!
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Technically, this method is even more loop-prone than this may imply—a self attribute reference run
anywhere in a class that defines this method will trigger __getattribute__ and also has the potential to
loop, depending on the class’s logic. This is normally desired behavior—intercepting every attribute
fetch is this method’s purpose, after all—but you should be aware that this method catches all attribute
fetches wherever they are coded. When coded within __getattribute__ itself, this almost always
causes a loop.

To avoid this loop, route the fetch through a higher superclass instead to skip this level’s version—
because the object class is always a superclass to every class, it serves well in this role:

    def __getattribute__(self, name):
        x = object.__getattribute__(self, 'other')    # Force higher to avoid me

For __setattr__, the situation is similar, as summarized in Chapter 30—assigning any attribute inside
this method triggers __setattr__ again and may create a similar loop:

    def __setattr__(self, name, value):
        self.other = value                            # Recurs (and might LOOP!)

Here too, self attribute assignments anywhere in a class defining this method trigger __setattr__ as
well, though the potential for looping is much stronger when they show up in __setattr__ itself. To
work around this problem, you can assign the attribute as a key in the instance’s __dict__ namespace
dictionary instead. This avoids direct attribute assignment:

    def __setattr__(self, name, value):
        self.__dict__['other'] = value                # Use attr dict to avoid me

Alternatively, __setattr__ can also pass its own attribute assignments to a higher superclass to avoid
looping, just like __getattribute__. In fact, this scheme is sometimes preferred when wrapped classes
use slots, properties, or other “virtual” attributes that live on classes instead of instances—and in the case
of slots, may preclude __dict__:

    def __setattr__(self, name, value):
        object.__setattr__(self, 'other', value)      # Force higher to avoid me

This book’s __setattr__ examples often use __dict__ for smaller demos anyhow, just because their
parameters are known. By contrast, though, we cannot use the __dict__ trick to avoid loops in
__getattribute__:

    def __getattribute__(self, name):
        x = self.__dict__['other']                    # Loops!

If this is coded, fetching the __dict__ attribute itself triggers __getattribute__ again—causing a
recursive loop and an immediate fail. Strange but true!

The __delattr__ method is less commonly used in practice, but when it is, it is called for every
attribute deletion, just as __setattr__ is called for every attribute assignment. When using this
method, you must avoid loops when deleting attributes by the same techniques: namespace dictionaries
operations or superclass method calls.

A First Example
Generic attribute management is not nearly as complicated as the prior section may have implied. To
see how to put these ideas to work, Example 38-9 is the same first example we used for properties and
descriptors in action again, this time implemented with attribute operator-overloading methods.
Because these methods are so generic, we test attribute names here to know when a managed attribute
is being accessed; others are allowed to pass normally.
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Example 38-9. getattr-person.py
class Person:
    def __init__(self, name):               # On [Person()]
        self._name = name                   # Triggers __setattr__!

    def __getattr__(self, attr):            # On [obj.undefined]
        print('get: ' + attr)
        if attr == 'name':                  # Intercept name: not stored
            return self._name               # Does not loop: real attr
        else:                               # Others are errors
            raise AttributeError(attr)

    def __setattr__(self, attr, value):     # On [obj.any = value]
        print('set: ' + attr)
        if attr == 'name':
            attr = '_name'                  # Set internal name
        self.__dict__[attr] = value         # Avoid looping here

    def __delattr__(self, attr):            # On [del obj.any]
        print('del: ' + attr)
        if attr == 'name':
            attr = '_name'                  # Avoid looping here too
        del self.__dict__[attr]             # but much less common

sue = Person('Sue Jones')           # sue has a managed attribute
print(sue.name)                     # Runs __getattr__
sue.name = 'Susan Jones'            # Runs __setattr__
print(sue.name)
del sue.name                        # Runs __delattr__

print('-'*20)
bob = Person('Bob Smith')           # bob's attrs work like sue's
print(bob.name)
#print(Person.name.__doc__)         # No direct equivalent here!

When this code is run, the same sort of output is produced, but this time it reflects our generic
attribute-interception methods responding to Python’s normal operator-overloading mechanism:

$ python3 getattr-person.py
set: _name
get: name
Sue Jones
set: name
get: name
Susan Jones
del: name
--------------------
set: _name
get: name
Bob Smith

Notice how the attribute assignment in the __init__ constructor triggers __setattr__ too—this
method catches every instance-attribute assignment, even those anywhere within the class itself, and
those to underlying attributes like _name. Also note that, unlike with properties and descriptors, there’s
no direct notion of specifying documentation for our attribute here; managed attributes exist within the
code of our interception methods, not as distinct objects.

__getattr__ and __getattribute__ | 1011



Using __getattribute__
To achieve exactly the same results with __getattribute__, replace __getattr__ in Example 38-9 with
the differing code in Example 38-10. Because it catches all attribute fetches, this version must be careful
to avoid looping by passing new fetches to a superclass, and it can’t generally assume unknown names
are errors.

Example 38-10. getattribute-person.py (differing part)
    # Replace just __getattr__ with this

    def __getattribute__(self, attr):                 # On [obj.any]
        print('get: ' + attr)
        if attr == 'name':                            # Intercept all names
            attr = '_name'                            # Map to internal name
        return object.__getattribute__(self, attr)    # Avoid looping here

When run with this change, the output is similar, but we get an extra __getattribute__ call for the
fetch of __dict__ in __setattr__ (the first time originating in __init__):

$ python3 getattribute-person.py
set: _name
get: __dict__
get: name
Sue Jones
set: name
get: __dict__
get: name
Susan Jones
del: name
get: __dict__
--------------------
set: _name
get: __dict__
get: name
Bob Smith

This example is equivalent to that coded for properties and descriptors, but it’s a bit artificial, and it
doesn’t really highlight these tools’ assets. Because they are generic, __getattr__ and
__getattribute__ are probably more commonly used in delegation-base code (as sketched earlier),
where attribute access is validated and routed to an embedded object. Where just a single attribute must 
be managed, properties and descriptors might do as well or better, and avoid extra calls for unmanaged
attributes.

Computed Attributes
As before, our prior example doesn’t really do anything but trace attribute fetches; it’s not much more
work to compute an attribute’s value when fetched. As for properties and descriptors, Example 38-11
creates a virtual attribute X that runs a calculation when fetched.
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Example 38-11. getattr-computed.py
class AttrSquare:
    def __init__(self, start):
        self.value = start                            # Triggers __setattr__!

    def __getattr__(self, attr):                      # On undefined attr fetch
        if attr == 'X':
            return self.value ** 2                    # value is not undefined
        else:
            raise AttributeError(attr)

    def __setattr__(self, attr, value):               # On all attr assignments
        if attr == 'X':
            attr = 'value'
        self.__dict__[attr] = value

A = AttrSquare(3)       # 2 instances of class with overloading
B = AttrSquare(32)      # Each has different state information

print(A.X)              # 3 ** 2
A.X = 4
print(A.X)              # 4 ** 2
print(B.X)              # 32 ** 2 (1024)

Running this code results in the same output that we got earlier when using properties and descriptors,
but this script’s mechanics are based on generic attribute interception methods:

$ python3 getattr-computed.py
9
16
1024

Using __getattribute__
As before, we can achieve the same effect with __getattribute__ instead of __getattr__.
Example 38-12 replaces the fetch method with a __getattribute__ and changes the __setattr__
assignment method to avoid looping by using direct object superclass method calls instead of
__dict__ keys.

Example 38-12. getattribute-computed.py
class AttrSquare:
    def __init__(self, start):
        self.value = start                  # Triggers __setattr__!

    def __getattribute__(self, attr):       # On all attr fetches
        if attr == 'X':
            return self.value ** 2          # Triggers __getattribute__ again!
        else:
            return object.__getattribute__(self, attr)

    def __setattr__(self, attr, value):     # On all attr assignments
        if attr == 'X':
            attr = 'value'
        object.__setattr__(self, attr, value)

…self-test code same as Example 38-11…
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When this version is run, the results are the same again so we won’t relist them here. Notice, though,
the implicit and subtle routing going on inside this class’s methods:

• self.value=start inside the constructor triggers __setattr__.
• self.value inside __getattribute__ triggers __getattribute__ again.

In fact, __getattribute__ is run twice each time we fetch attribute X. This doesn’t happen in the
__getattr__ version because the value attribute is not undefined (and hence skips the method). If you
care about speed and want to avoid this, change __getattribute__ to use the superclass to fetch value
as well:

    def __getattribute__(self, attr):
        if attr == 'X':
            return object.__getattribute__(self, 'value') ** 2

Of course, this still incurs a call to the superclass method but not an additional recursive call before we
get there. If that’s confusing, add print calls to these methods to trace how and when they run.

__getattr__ and __getattribute__ Compared
To summarize the coding differences between __getattr__ and __getattribute__, Example 38-13
uses both to implement three attributes—attr1 is a class attribute, attr2 is an instance attribute, and
attr3 is a virtual managed attribute computed when fetched.

Example 38-13. getattr-v-getattribute.py
class GetAttr:
    attr1 = 1
    def __init__(self):
        self.attr2 = 2
    def __getattr__(self, attr):            # On undefined attrs only
        print('get:', attr)                 # Not on attr1: inherited from class
        if attr == 'attr3':                 # Not on attr2: stored on instance
            return 3
        else:
            raise AttributeError(attr)

X = GetAttr()
print(X.attr1)
print(X.attr2)
print(X.attr3)
print('-'*20)

class GetAttribute:
    attr1 = 1
    def __init__(self):
        self.attr2 = 2
    def __getattribute__(self, attr):       # On all attr fetches
        print('get:',  attr)                # Use superclass to avoid looping here
        if attr == 'attr3':
            return 3
        else:
            return object.__getattribute__(self, attr)

X = GetAttribute()
print(X.attr1)
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print(X.attr2)
print(X.attr3)

When run, the __getattr__ version intercepts only attr3 accesses because it is undefined. The
__getattribute__ version, on the other hand, intercepts all attribute fetches and must route those it
does not manage to the superclass fetcher to avoid loops:

$ python3 getattr-v-getattribute.py
1
2
get: attr3
3
--------------------
get: attr1
1
get: attr2
2
get: attr3
3

Although __getattribute__ can catch more attribute fetches than __getattr__, in practice they are
often just variations on a theme—if attributes are not physically stored, the two have the same effect.

Management Techniques Compared
To summarize the coding differences in all four attribute-management schemes we’ve just explored, let’s
quickly step through a somewhat more comprehensive computed-attribute example using each techni‐
que. The first version, Example 38-14, uses properties to intercept and calculate attributes named
square and cube. Notice how their base values are stored in names that begin with an underscore so
they don’t clash with the names of the properties themselves.

Example 38-14. all_four_props.py
"Two dynamically computed attributes with properties"

class Powers:
    def __init__(self, square, cube):
        self._square = square                      # _square is the base value
        self._cube   = cube                        # square is the property name

    def getSquare(self):
        return self._square ** 2
    def setSquare(self, value):
        self._square = value
    square = property(getSquare, setSquare)        # Or @property decorator

    def getCube(self):
        return self._cube ** 3 
    cube = property(getCube)                       # Likewise

To do the same with descriptors, Example 38-15 defines the attributes with complete classes. Note that
these descriptors store base values as instance state, so they must use leading underscores again so as
not to clash with the names of descriptors; as called out by the final example of this chapter, we could
avoid this renaming requirement by storing base values as descriptor state instead, but that doesn’t as
directly address data that must vary per client-class instance.
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Example 38-15. all_four_desc.py
"Same, but with descriptors (per-instance state)"

class DescSquare:
    def __get__(self, instance, owner):
        return instance._square ** 2
    def __set__(self, instance, value):
        instance._square = value

class DescCube:
    def __get__(self, instance, owner):
        return instance._cube ** 3

class Powers:
    square = DescSquare()
    cube   = DescCube()
    def __init__(self, square, cube):
        self._square = square                  # "self.square = square" works too,
        self._cube   = cube                    # because it triggers desc __set__!

To achieve the same result with __getattr__ fetch interception, Example 38-16 again stores base values
with underscore-prefixed names so that accesses to managed names are undefined and thus invoke its
method; it also needs to code a __setattr__ to intercept assignments and take care to avoid its poten‐
tial for looping.

Example 38-16. all_four_getattr.py
"Same, but with generic __getattr__ undefined-attribute interception"

class Powers:
    def __init__(self, square, cube):
        self._square = square
        self._cube   = cube

    def __getattr__(self, name):
        if name == 'square':
            return self._square ** 2
        elif name == 'cube':
            return self._cube ** 3
        else:
            raise TypeError('unknown attr:' + name)

    def __setattr__(self, name, value):
        if name == 'square':
            self.__dict__['_square'] = value             # Or use object
        else:
            self.__dict__[name] = value

The final option in Example 38-17, coding with __getattribute__, is similar to the prior version.
Because it catches every attribute now, though, it must also route base value fetches to a superclass to
avoid looping or extra calls—fetching self._square directly works too, but runs a second
__getattribute__ call.
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Example 38-17. all_four_getattribute.py
"Same, but with generic __getattribute__ all-attribute interception"

class Powers:
    def __init__(self, square, cube):
        self._square = square
        self._cube   = cube

    def __getattribute__(self, name):
        if name == 'square':
            return object.__getattribute__(self, '_square') ** 2
        elif name == 'cube':
            return object.__getattribute__(self, '_cube') ** 3
        else:
            return object.__getattribute__(self, name)

    def __setattr__(self, name, value):
        if name == 'square':
            object.__setattr__(self, '_square', value)   # Or use __dict__
        else:
            object.__setattr__(self, name , value)

To test, the following REPL session loops through a list of all four modules’ name strings and imports
and fetches classes along the way. Each technique takes a different form in code, but all four produce
the same result when run:

>>> from importlib import import_module
>>> mods = [f'all_four_{M}' for M in ('props', 'desc', 'getattr', 'getattribute')]
>>> for modname in mods:
        module = import_module(modname)    # Import by name string
        X = module.Powers(3, 4)            # This module's class (print to see)
        print(X.square)                    # 3 ** 2 = 9
        print(X.cube)                      # 4 ** 3 = 64
        X.square = 5
        print(X.square)                    # 5 ** 2 = 25
         
9
64
25
…repeated four times…

For more on how these alternatives compare, and other coding options, stay tuned for a more realistic
application of them in the attribute-validation example ahead. First, though, we need to take a short
side trip to study a pitfall associated with two of these tools—the generic attribute interceptors.

Intercepting Built-in Operation Attributes
If you’ve been reading this book linearly, some of this section is elaboration on earlier notes, especially
the sidebar “Delegating Built-ins—or Not” on page 698. When __getattr__ and __getattribute__
were introduced here, it was stated that they intercept undefined- and all-attribute fetches, respectively,
which makes them ideal for delegation-based coding patterns.

While this is true for both normally named and explicitly fetched attributes, their behavior needs some
additional clarification. Specifically, the implicit method-name fetches of built-in operations will never
automatically be routed to either of these two attribute-interceptor methods. This means that operator-
overloading method calls cannot be delegated to wrapped objects unless wrapper classes somehow
redefine these methods themselves.
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For example, attribute fetches for the __str__, __add__, and __getitem__ methods run implicitly by
printing, + expressions, and indexing, respectively, are not routed to either __getattr__ or
__getattribute__. Instead, such methods are looked up in classes, and skip the instance and its
attribute interceptors. Hence, there is no direct way to generically catch and delegate built-in operations
like these.

This was a Python 3.X bifurcation, whose purported rationale involved metaclasses and optimization of
built-in operations. Whatever its basis, all attributes—both __X__ and other—are still dispatched
through the instance’s interceptor methods when accessed explicitly by name, so this qualifies as a glar‐
ing inconsistency: X.__add__ runs __getattr__, but X+Y, which uses X.__add__, does not. The net
effect complicates delegation-based code.

The good news is that wrapper classes can work around this constraint by redefining operator-
overloading methods in the wrapper itself, in order to catch and delegate calls. These extra methods can
be added either manually, with tools, or by definition in, and inheritance from, common superclasses.
It’s more work for delegation classes when operator-overloading methods are part of a wrapped object’s
interface, but it’s not a showstopper.

As a demo of the issue, consider the code in Example 38-18, which tests various attribute types and
built-in operations on instances of classes containing __getattr__ and __getattribute__ methods.

Example 38-18. getattr-builtins.py
class GetAttr:
    cattr = 88                       # Attrs stored on class and instance
    def __init__(self):              # These skip getattr, but not getattribute
       self.iattr = 77

    def __len__(self):               # Redefine for len(): doesn't run getattr
        print('__len__: 66')
        return 66

    def __getattr__(self, attr):     # Provide __str__ if asked, else dummy func
        print('getattr:', attr)      # Never run for __str__: inherited from object
        if attr == '__str__':
            return lambda *args: '[Getattr str]'
        else:
            return lambda *args: None

class GetAttribute:
    cattr = 88                       # Similar, but catch all attributes
    def __init__(self):              # Except implicit fetches for built-in ops
        self.iattr = 77               

    def __len__(self):               # Redefine for len(): doesn't run getattribute
        print('__len__: 66')         # But explicit fetches of inherited __str__ do
        return 66

    def __getattribute__(self, attr):
        print('getattribute:', attr)
        if attr == '__str__':
            return lambda *args: '[GetAttribute str]'
        else:
            return lambda *args: None

for Class in GetAttr, GetAttribute:
    print('\n' + Class.__name__.ljust(50, '='))
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    X = Class()

    # Defined attributes trigger getattribute but not getattr

    X.cattr                   # Class attr    (defined – skips getattr)
    X.iattr                   # Instance attr (defined – skips getattr)
    X.other                   # Missing attr
    len(X)                    # __len__ defined explicitly: moot

    # Built-in ops do not invoke either getattr or getattribute
    # No defaults are inherited for these from object superclass

    try:    X[0]              # Tries to invoke __getitem__
    except: print('fail []')
    try:    X + 99            # Ditto, __add__
    except: print('fail +')
    try:    X()               # Ditto, __call__
    except: print('fail ()')

    # But explicit calls invoke both catchers

    X.__getitem__(0)
    X.__add__(99)
    X.__call__()

    # The implied object superclass defines a __str__ that precludes getattr
    # But the absolute getattribute is not called for implicit fetches either
 
    print(X.__str__())        # __str__: explicit call => only __getattr__ skipped
    print(X)                  # __str__: implicit via built-in => both skipped

This file runs the same set of tests on each of its classes in turn. Match its following output with its tests
and comments to see how it works. In short, neither __getattr__ nor __getattribute__ are run for
any of the operator-overloading names invoked by built-in operations because such names are looked
up in classes only:

$ python3 getattr-builtins.py

GetAttr===========================================
getattr: other
__len__: 66
fail []
fail +
fail ()
getattr: __getitem__
getattr: __add__
getattr: __call__
<__main__.GetAttr object at 0x10f76f020>
<__main__.GetAttr object at 0x10f76f020>

GetAttribute======================================
getattribute: cattr
getattribute: iattr
getattribute: other
__len__: 66
fail []
fail +
fail ()
getattribute: __getitem__
getattribute: __add__
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getattribute: __call__
getattribute: __str__
[GetAttribute str]
<__main__.GetAttribute object at 0x10f74c440>

More generally, all explicit method-name attribute fetches are always routed to both attribute-
interception methods, but none of the implicit operator-overloading methods trigger either attribute-
interception method when their attributes are fetched by built-in operations. Salient points in this
demo worth calling out:

• __str__ access fails to be caught twice by __getattr__: once for the built-in print, and once for
explicit fetches because a default is inherited from the built-in object implied above every topmost
class.

• __str__ fails to be caught only once by the __getattribute__ catchall—during the built-in print
operation. Explicit fetches bypass the inherited __str__ and run __getattribute__.

• __call__ fails to be caught in both schemes for built-in call expressions, but it is intercepted by
both when fetched explicitly; unlike __str__, there is no inherited __call__ default in object to
defeat __getattr__ in explicit fetches. The same goes for the __add__ of + operations.

• __len__ is handled by both classes because it is an explicitly defined method in the classes them‐
selves—though its name is not routed to either __getattr__ or __getattribute__ if we delete the
classes’ __len__ methods because the len built-in skips them as usual.

Again, the net effect is that operator-overloading methods implicitly run by built-in operations are
never routed through either attribute interception method. Python begins the search for such attributes
in classes and skips instance lookup mechanisms entirely. Normally, named attributes and explicit
fetches start with the instance instead.

For a more realistic example of this phenomenon’s impact on delegation classes, stay tuned for Chap‐
ter 39’s Private decorator—along with its coverage of multiple reusable workarounds.

Revisiting Chapter 28’s delegation example
As a coda, you should also now be able to work out why the Manager class coded in Example 28-11 of
Chapter 28 had to code a __repr__ to route printing requests to its wrapped object. Just like __str__ in
our demo, object provides a default __repr__, which would prevent print operations from invoking a
__getattr__. Technically speaking, object defines both __str__ and __repr__, but its __str__ simply
calls __repr__.

That said, object’s defaults are largely a moot point: like all built-in operations, print bypasses both
__getattr__ and __getattribute__, as it did for __getattribute__ in our demo. Hence, a __repr__
is required by both the object default and the built-in’s behavior.

Again, fixes for delegating built-ins are in Chapter 39 (unless we run out of underscores before that!).

Example: Attribute Validations
To close out this chapter, let’s turn to a more realistic example, coded in all four of our attribute man‐
agement schemes. The example we will use defines a CardHolder object with four attributes, three of
which are managed. The managed attributes validate or transform values when fetched or stored. All
four versions produce the same results for the same test code, but they implement their attributes in
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very different ways. The examples are largely for self-study; although we won’t go through their code in
detail, they all use concepts we’ve already explored in this chapter.

Using Properties to Validate
Our first coding in Example 38-19 uses properties to manage three attributes. As usual, we could use
simple methods instead of managed attributes, but properties help if we have already been using
attributes in existing code. Properties run code automatically on attribute access but are focused on a
specific set of attributes; they cannot be used to intercept all attributes generically.

To understand this code, it’s crucial to notice that the attribute assignments inside the __init__ con‐
structor method trigger property setter methods too. When this method assigns to self.name, for
example, it automatically invokes the setName method, which transforms the value and assigns it to an
instance attribute called __name so it won’t clash with the property’s name.

This renaming, sometimes called name mangling, is important because properties use common instance
state and have none of their own. Data is stored in an attribute called __name, and the attribute called
name is always a property, not data. As we saw in Chapter 31, names like __name are known as pseudo‐
private attributes and are changed by Python to include the enclosing class’s name when stored in the
instance’s namespace; here, this helps keep the implementation-specific attributes distinct from others,
including that of the property that manages them.

In the end, this class manages attributes called name, age, and acct; allows the attribute addr to be
accessed directly; and provides a read-only attribute called remain that is entirely virtual and computed
on demand. For comparison purposes, this property-based coding weighs in at 39 lines of code (includ‐
ing blank lines).

Example 38-19. validate_properties.py
class CardHolder:
    acctlen = 8                                # Class data
    retireage = 62.5

    def __init__(self, acct, name, age, addr):
        self.acct = acct                       # Instance data
        self.name = name                       # These trigger prop setters too!
        self.age  = age                        # __X mangled to have class name
        self.addr = addr                       # addr is not managed
                                               # remain has no data
    def getName(self):
        return self.__name
    def setName(self, value):
        value = value.lower().replace(' ', '_')
        self.__name = value
    name = property(getName, setName)          # Or @ decorators for both

    def getAge(self):
        return self.__age
    def setAge(self, value):
        if value < 0 or value > 150:
            raise ValueError('invalid age')
        else:
            self.__age = value
    age = property(getAge, setAge)

    def getAcct(self):
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        return self.__acct[:-3] + '***'
    def setAcct(self, value):
        value = value.replace('-', '')
        if len(value) != self.acctlen:
            raise TypeError('invalid acct number')
        else:
            self.__acct = value
    acct = property(getAcct, setAcct)

    def remainGet(self):                       # Could be a method, not attr
        return self.retireage - self.age       # Unless already using as attr
    remain = property(remainGet)

Testing code
To test our class, run the script in Example 38-20 in a console with the name of the class’s module (sans
“.py”) as a single command-line argument (you could also import the class in a REPL, but we’re trying
to avoid repeating code here). We’ll use this same test script for all four versions of this example so their
output will be the same. When it runs, it makes two instances of our managed-attribute class and
fetches and changes their various attributes. Operations expected to fail are wrapped in try statements.

Example 38-20. validate_tester.py
def loadclass():
    import sys, importlib
    modulename = sys.argv[1]                          # Module name in command line
    module = importlib.import_module(modulename)      # Import module by name string
    print(f'[Using: {module.CardHolder}]')            # No need for getattr() here
    return module.CardHolder

def printholder(who):
    print(who.acct, who.name, who.age, who.remain, who.addr, sep=' / ')

if __name__ == '__main__':
    CardHolder = loadclass()
    bob = CardHolder('1234-5678', 'Bob Smith', 40, '123 main st')
    printholder(bob)
    bob.name = 'Bob Q. Smith'
    bob.age  = 50
    bob.acct = '23-45-67-89'
    printholder(bob)

    sue = CardHolder('5678-12-34', 'Sue Jones', 35, '124 main st')
    printholder(sue)
    try:
        sue.age = 200
    except: print('Bad age for Sue')

    try:
        sue.remain = 5
    except: print("Can't set sue.remain")

    try:
        sue.acct = '1234567'
    except: print('Bad acct for Sue')

Following is the output of our test script’s code; again, this is the same for the other versions of this
example ahead, except for the tested class’s name. Trace through this code to see how the class’s
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methods are invoked. Accounts are displayed with some digits hidden, names are converted to a stan‐
dard format, and time remaining until retirement (hypothetically speaking) is computed when fetched
using a class-attribute cutoff:

$ python3 validate_tester.py validate_properties
[Using: <class 'validate_properties.CardHolder'>]
12345*** / bob_smith / 40 / 22.5 / 123 main st
23456*** / bob_q._smith / 50 / 12.5 / 123 main st
56781*** / sue_jones / 35 / 27.5 / 124 main st
Bad age for Sue
Can't set sue.remain
Bad acct for Sue

Using Descriptors to Validate
Now, let’s recode our example using descriptors instead of properties. As we’ve seen, descriptors are very 
similar to properties in terms of functionality and roles; in fact, properties are basically a focused form
of descriptor. Like properties, descriptors are designed to handle specific attributes, not generic
attribute access. Unlike properties, descriptors can also have their own state, and so are perhaps a more
general scheme.

Option 1: Validating with shared descriptor-instance state (badly!)
To understand the code in Example 38-21, it’s again important to notice that the attribute assignments
inside the __init__ constructor method trigger descriptor __set__ methods. When the constructor
method assigns to self.name, for example, it automatically invokes the Name.__set__() method, which
transforms the value and assigns it to a descriptor attribute called name.

In the end, this class implements the same attributes as the prior version: it manages attributes called
name, age, and acct; allows the attribute addr to be accessed directly; and provides a read-only attribute
called remain that is entirely virtual and computed on demand. Notice how we must catch assignments
to the remain name in its descriptor and raise an exception; as we learned earlier, if we did not do this,
assigning to this attribute of an instance would silently create an instance attribute that hides the class-
attribute descriptor.

For comparison purposes, this descriptor-based coding takes 45 lines of code.

Example 38-21. validate_descriptors1.py
class CardHolder:                                # Using shared descriptor state
    acctlen = 8                                  # Class data
    retireage = 62.5

    def __init__(self, acct, name, age, addr):
        self.acct = acct                         # Instance data
        self.name = name                         # These trigger __set__ calls too!
        self.age  = age                          # __X not needed: in descriptor
        self.addr = addr                         # addr is not managed
                                                 # remain has no data
    class Name:
        def __get__(self, instance, owner):      # Class names: CardHolder locals
            return self.name
        def __set__(self, instance, value):
            value = value.lower().replace(' ', '_')
            self.name = value
    name = Name()
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    class Age:
        def __get__(self, instance, owner):
            return self.age                             # Use descriptor data
        def __set__(self, instance, value):
            if value < 0 or value > 150:
                raise ValueError('invalid age')
            else:
                self.age = value
    age = Age()

    class Acct:
        def __get__(self, instance, owner):
            return self.acct[:-3] + '***'
        def __set__(self, instance, value):
            value = value.replace('-', '')
            if len(value) != instance.acctlen:          # Use instance class data
                raise TypeError('invalid acct number')
            else:
                self.acct = value
    acct = Acct()

    class Remain:
        def __get__(self, instance, owner):
            return instance.retireage - instance.age    # Triggers Age.__get__
        def __set__(self, instance, value):
            raise TypeError('cannot set remain')        # Else set allowed here
    remain = Remain()

When run with the prior testing script, all examples in this section produce the same output as shown
for properties earlier, except that the name of the class in the first line varies:

$ python3 validate_tester.py validate_descriptors1
[Using: <class 'validate_descriptors1.CardHolder'>]
…rest is same output as properties…

Option 2: Validating with per-client-instance state (correctly)
Unlike in the prior property-based variant, though, in Example 38-21, the actual name value is attached
to the descriptor object, not the client class instance. Although we could store this value in either
instance or descriptor state, the latter avoids the need to mangle names with underscores to avoid colli‐
sions. In the CardHolder client class, the attribute called name is always a descriptor object, not data.

Importantly, the downside of this scheme is that state stored inside a descriptor itself is class-level data
that is effectively shared by all client-class instances and so cannot vary between them. That is, storing
state in the descriptor instance instead of the owner (client) class instance means that the state will be
the same in all owner-class instances. Descriptor state can vary only per attribute appearance.

To see this at work, try printing attributes of the bob instance after creating the second instance, sue,
with the new test script in Example 38-22. The values of sue’s managed attributes (name, age, and acct)
overwrite those of the earlier object bob, because both share the same, single descriptor instance
attached to their class.
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Example 38-22. validate_tester_plus.py
from validate_tester import loadclass
CardHolder = loadclass()

bob = CardHolder('1234-5678',  'Bob Smith', 40, '123 main st')
print('bob:', bob.name, bob.acct, bob.age, bob.addr)

sue = CardHolder('5678-12-34', 'Sue Jones', 35, '124 main st')
print('sue:', sue.name, sue.acct, sue.age, sue.addr)    # addr differs: client data
print('bob:', bob.name, bob.acct, bob.age, bob.addr)    # name,acct,age overwritten?

When this script is run with the descriptor-state CardHolder of Example 38-21, the results confirm the
suspicion—in terms of managed attributes, bob has morphed into sue!

$ python3 validate_tester_plus.py validate_descriptors1
[Using: <class 'validate_descriptors1.CardHolder'>]
bob: bob_smith 12345*** 40 123 main st
sue: sue_jones 56781*** 35 124 main st
bob: sue_jones 56781*** 35 123 main st

This isn’t an issue for properties because they have no state of their own, and there are valid uses for
descriptor state. Such state might be used, for example, to manage descriptor implementation and data
that spans all instances, and this example was coded this way on purpose to illustrate the technique.
Moreover, the state scope implications of class versus instance attributes should be more or less a given
at this point in the book.

However, in this particular use case, attributes of CardHolder objects are probably better stored as per-
instance data instead of descriptor-instance data, perhaps using the same __X naming convention as the
property-based equivalent to avoid name clashes in the instance—a more important factor this time, as
the client is a different class with its own state attributes. Example 38-23 has the required changes; it
doesn’t change line counts (we’re still at 45).

Example 38-23. validate_descriptors2.py
class CardHolder:                                # Using per-client-instance state
    acctlen = 8                                  # Class data
    retireage = 62.5

    def __init__(self, acct, name, age, addr):
        self.acct = acct                         # Client instance data
        self.name = name                         # These trigger __set__ calls too!
        self.age  = age                          # __X needed: in client instance
        self.addr = addr                         # addr is not managed
                                                 # remain managed but has no data
    class Name:
        def __get__(self, instance, owner):      # Class names: CardHolder locals
            return instance.__name
        def __set__(self, instance, value):
            value = value.lower().replace(' ', '_')
            instance.__name = value
    name = Name()                                       # class.name vs mangled attr

    class Age:
        def __get__(self, instance, owner):
            return instance.__age                       # Use *instance* data
        def __set__(self, instance, value):
            if value < 0 or value > 150:
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                raise ValueError('invalid age')
            else:
                instance.__age = value
    age = Age()                                         # class.age vs mangled attr

    class Acct:
        def __get__(self, instance, owner):
            return instance.__acct[:-3] + '***'
        def __set__(self, instance, value):
            value = value.replace('-', '')
            if len(value) != instance.acctlen:          # Use instance class data
                raise TypeError('invalid acct number')
            else:
                instance.__acct = value
    acct = Acct()                                       # class.acct vs mangled name

    class Remain:
        def __get__(self, instance, owner):
            return instance.retireage - instance.age    # Triggers Age.__get__
        def __set__(self, instance, value):
            raise TypeError('cannot set remain')        # Else set allowed here
    remain = Remain()

This supports per-instance data for the name, age, and acct managed fields as expected (bob remains
bob), and other tests work as before:

$ python3 validate_tester_plus.py validate_descriptors2
[Using: <class 'validate_descriptors2.CardHolder'>]
bob: bob_smith 12345*** 40 123 main st
sue: sue_jones 56781*** 35 124 main st
bob: bob_smith 12345*** 40 123 main st 

$ python3 validate_tester.py validate_descriptors2
…same output as properties, except class name…

One small caveat here: as coded, this version doesn’t support through-class descriptor access because
such access passes a None to the instance argument (also notice the attribute __X name mangling to
_Name__name in the error message when the fetch attempt is made):

>>> from validate_descriptors1 import CardHolder
>>> pat = CardHolder('1234-5678', 'Pat Smith', 40, '123 main st')
>>> pat.name
'pat_smith'
>>> CardHolder.name
'pat_smith'

>>> from validate_descriptors2 import CardHolder
>>> pat = CardHolder('1234-5678', 'Pat Smith', 40, '123 main st')
>>> pat.name
'pat_smith'
>>> CardHolder.name
AttributeError: 'NoneType' object has no attribute '_Name__name'

We could detect this with a minor amount of additional code to trigger the error more explicitly, but
there’s probably no point—because this version stores data in the client instance, there’s no meaning to
its descriptors unless they’re accompanied by a client instance (much like a normal nonbound instance
method). In fact, that’s really the entire point of this version’s change!

Because they are classes, descriptors are a useful and powerful tool, but they present choices that can
deeply impact a program’s behavior. As always in OOP, choose your state retention policies carefully.
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Using __getattr__ to Validate
As we’ve seen, the __getattr__ method intercepts all undefined attributes, so it can be more generic
than using properties or descriptors. For our example, we simply test the attribute name to know when
a managed attribute is being fetched; others are stored physically on the instance and so never reach
__getattr__. Although this approach is more general than using properties or descriptors, extra work
may be required to imitate the specific attribute focus of other tools. We need to check names at run‐
time—a multiple-choice that’s a prime role for the match statement—and we must code a __setattr__
in order to intercept and validate attribute assignments.

Example 38-24 hosts the __getattr__ version of our validations code. In the end, this class, like the
prior two, manages attributes called name, age, and acct; allows the attribute addr to be accessed
directly; and provides a read-only attribute called remain that is entirely virtual and is computed on
demand.

As for the property and descriptor versions of this example, it’s critical to notice that the attribute
assignments inside the __init__ constructor method trigger the class’s __setattr__ method too. When
this method assigns to self.name, for example, it automatically invokes the __setattr__ method,
which transforms the value and assigns it to an instance attribute called name. By storing name on the
instance, it ensures that future accesses will not trigger __getattr__. In contrast, acct is stored as
_acct so that later accesses to acct do invoke __getattr__.

For comparison purposes, this alternative comes in at 34 lines of code—5 fewer than the property-
based version and 11 fewer than the version using descriptors (though replacing if with match here
added two lines, along with extra indentation). Clarity matters more than code size, of course, but extra
code can imply extra development and maintenance work. Probably more important here are roles:
generic tools like __getattr__ are better suited to generic delegation, while properties and descriptors
are designed to manage specific attributes.

Also note again that the code here incurs extra calls when setting unmanaged attributes (e.g., addr),
although no extra calls are incurred for fetching unmanaged attributes since they are defined. Though
this will likely result in negligible overhead for most programs, the more narrowly focused properties
and descriptors incur an extra call only when managed attributes are accessed, and also appear in dir
results automatically when needed by generic tools.

Example 38-24. validate_getattr.py
class CardHolder:
    acctlen = 8                                  # Class data
    retireage = 62.5

    def __init__(self, acct, name, age, addr):
        self.acct = acct                         # Instance data
        self.name = name                         # These trigger __setattr__ too
        self.age  = age                          # _acct not mangled: name tested
        self.addr = addr                         # addr is not managed
                                                 # remain has no data
    def __getattr__(self, name):
        match name:
            case 'acct':                               # On undefined attr fetches
                return self._acct[:-3] + '***'         # name, age, addr are defined
            case 'remain':
                return self.retireage - self.age       # Doesn't trigger __getattr__
            case _:
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                raise AttributeError(name)

    def __setattr__(self, name, value):
        match name:
            case 'name':                                 # On all attr assignments
                value = value.lower().replace(' ', '_')  # addr stored directly
            case 'age':                                  # acct mangled to _acct
                if value < 0 or value > 150:
                    raise ValueError('invalid age')
            case 'acct':
                name  = '_acct'
                value = value.replace('-', '')
                if len(value) != self.acctlen:
                    raise TypeError('invalid acct number')
            case 'remain':
                raise TypeError('cannot set remain')
        self.__dict__[name] = value                      # Avoid looping (or object)

When this code is run with either test script, it produces the same output (with a different class name):
$ python3 validate_tester.py validate_getattr
…same output as properties, except class name…

$ python3 validate_tester_plus.py validate_getattr
…same output as instance-state descriptors, except class name…

Using __getattribute__ to Validate
Our final variant uses the __getattribute__ catchall to intercept attribute fetches and manage them as
needed. Every attribute fetch is caught here, so we test the attribute names to detect managed attributes
and route all others to the superclass for normal fetch processing. This version uses the same
__setattr__ to catch assignments as the prior version (there is no corresponding “__setattribute__”
in Python—so far?).

Example 38-25 codes this last mod. It works very much like the __getattr__ version, so we won’t
repeat the full description here. Note, though, that because every attribute fetch is routed to
__getattribute__, we don’t need to mangle names to intercept them here (acct is stored as acct). On
the other hand, this code must take care to route nonmanaged attribute fetches to a superclass to avoid
looping or extra calls.

Also, notice that this version incurs extra calls for both setting and fetching unmanaged attributes (e.g.,
addr); if speed is paramount, this alternative may be the slowest of the bunch. For comparison pur‐
poses, this version amounts to 34 lines of code, just like the prior version (and again including 2 lines
added by match).

Example 38-25. validate_getattribute.py
class CardHolder:
    acctlen = 8                                  # Class data
    retireage = 62.5

    def __init__(self, acct, name, age, addr):
        self.acct = acct                         # Instance data
        self.name = name                         # These trigger __setattr__ too
        self.age  = age                          # acct not mangled: name tested
        self.addr = addr                         # addr is not managed
                                                 # remain has no data
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    def __getattribute__(self, name):
        superget = object.__getattribute__                 # Don't loop: level up
        match name:
            case 'acct':                                   # On all attr fetches
                return superget(self, 'acct')[:-3] + '***'
            case 'remain':
                return superget(self, 'retireage') - superget(self, 'age')
            case _:
                return superget(self, name)                # name, age, addr: stored

    def __setattr__(self, name, value):
        match name:
            case 'name':                                   # On all attr assignments
                value = value.lower().replace(' ', '_')    # addr stored directly
            case 'age':
                if value < 0 or value > 150:
                    raise ValueError('invalid age')
            case 'acct':
                value = value.replace('-', '')
                if len(value) != self.acctlen:
                    raise TypeError('invalid acct number')
            case 'remain':
                raise TypeError('cannot set remain')
        self.__dict__[name] = value                         # Avoid loop, orig names

Both the __getattr__ and __getattribute__ scripts work the same as the property and per-client-
instance descriptor versions when run by both tester scripts—four ways to achieve the same goal in
Python, though they vary in structure and are perhaps less redundant in some other roles:

$ python3 validate_tester.py validate_getattribute
…same output as properties, except class name…

$ python3 validate_tester_plus.py validate_getattribute
…same output as instance-state descriptors, except class name…

Be sure to study and run this section’s code on your own for more pointers on managed-attribute cod‐
ing techniques.

Chapter Summary
This chapter covered the various techniques for managing access to attributes in Python, including the
__getattr__ and __getattribute__ operator-overloading methods, and class properties and descrip‐
tors. Along the way, it compared and contrasted these tools and presented a handful of use cases to
demonstrate their behavior.

Chapter 39 continues our tool-building focus with a survey of decorators—code run automatically at
function and class creation time rather than on attribute access. Before we continue, though, let’s work
through a set of questions to review what we’ve covered here.

Test Your Knowledge: Quiz
1. How do __getattr__ and __getattribute__ differ?
2. How do properties and descriptors differ?
3. How are properties and decorators related?
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4. What are the main functional differences between __getattr__ and __getattribute__ and prop‐
erties and descriptors?

Test Your Knowledge: Answers
1. The __getattr__ method is run for explicit fetches of undefined attributes only (i.e., those not

present on an instance and not inherited from any of its classes). By contrast, the
__getattribute__ method is called for every explicit attribute fetch, whether the attribute is
defined or not. Because of this, code inside a __getattr__ can freely fetch other attributes if they
are defined, whereas __getattribute__ must use special code for all such attribute fetches to
avoid looping or extra calls (it must route fetches to a superclass to skip itself). Neither method is
run for implicit fetches of built-in operations (sans the next chapter’s heroics).

2. Properties serve a specific role, whereas descriptors are more general. Properties define get, set,
and delete functions for a specific attribute; descriptors provide a class with methods for these
actions, too, but they provide extra flexibility to support more arbitrary actions. In fact, properties
are really a simple way to create a specific kind of descriptor—one that runs functions on attribute
accesses. Coding differs too: a property is created with a built-in function, and a descriptor is
coded with a class; thus, descriptors can leverage all the usual OOP features of classes, such as
inheritance. Moreover, in addition to the instance’s state information, descriptors have local state of
their own, which can sometimes avoid name collisions in the instance.

3. Properties can be coded with decorator syntax. Because the property built-in accepts a single
function argument and returns a function, it can be used directly as a function decorator to define
a fetch-access property. Due to the name rebinding behavior of decorators, the name of the decora‐
ted function is assigned to a property whose get accessor is set to the original function decorated
(name=property(name)). Property setter and deleter attributes allow us to further add set and
delete accessors with decoration syntax—they set the accessor to the decorated function and return
the augmented property. Some may find this a bit clumsy, but this is subjective.

4. The __getattr__ and __getattribute__ methods are more generic: they can be used to catch
arbitrarily many attributes. In contrast, each property or descriptor provides access interception
for only one specific attribute—we can’t catch every attribute fetch with a single property or
descriptor. On the other hand, properties and descriptors handle both attribute fetch and assign‐
ment by design: __getattr__ and __getattribute__ handle fetches only; to intercept assignments
as well, __setattr__ must also be coded. The implementation is also different: __getattr__ and
__getattribute__ are operator-overloading methods, whereas properties and descriptors are
objects manually assigned to class attributes. Unlike the others, properties and descriptors can also
sometimes avoid extra calls on assignment to unmanaged names and show up in dir results auto‐
matically, but are also narrower in scope—they can’t address generic delegation goals. In Python
evolution, new features tend to offer alternatives but often do not fully subsume what came before.
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