
notation and operator symbols. For instance, to add two numbers X and Y you would
say X + Y, which tells Python to apply the + operator to the values named by X and Y.
The result of the expression is the sum of X and Y, another number object.

Table 5-2 lists all the operator expressions available in Python. Many are self-
explanatory; for instance, the usual mathematical operators (+, −, *, /, and so on) are
supported. A few will be familiar if you’ve used other languages in the past: % com-
putes a division remainder, << performs a bitwise left-shift, & computes a bitwise
AND result, and so on. Others are more Python-specific, and not all are numeric in
nature: for example, the is operator tests object identity (i.e., address in memory, a
strict form of equality), and lambda creates unnamed functions.

Table 5-2. Python expression operators and precedence

Operators Description

yield x Generator function send protocol

lambda args: expression Anonymous function generation

x if y else z Ternary selection (x is evaluated only if y is true)

x or y Logical OR (y is evaluated only if x is false)

x and y Logical AND (y is evaluated only if x is true)

not x Logical negation

x in y, x not in y
x is y, x is not y
x < y, x <= y, x > y, x >= y
x == y, x != y

Membership (iterables, sets)
Object identity tests
Magnitude comparison, set subset and superset
Value equality operators

x | y Bitwise OR, set union

x ^ y Bitwise XOR, set symmetric difference

x & y Bitwise AND, set intersection

x << y, x >> y Shift x left or right by y bits

x + y

x – y

Addition, concatenation
Subtraction, set difference

x * y

x % y

x / y, x // y

Multiplication, repetition
Remainder, format
Division: true and floor

−x, +x
˜x

Negation, identity
Bitwise NOT (inversion)

x ** y Power (exponentiation)

Numeric Type Basics | 141

Operators Description

x[i]

x[i:j:k]

x(...)

x.attr

Indexing (sequence, mapping, others)
Slicing
Call (function, method, class, other callable)
Attribute reference

(...)

[...]

{...}

Tuple, expression, generator expression
List, list comprehension
Dictionary, set, set and dictionary comprehensions

Since this book addresses both Python 2.X and 3.X, here are some notes about version
differences and recent additions related to the operators in Table 5-2:

• In Python 2.X, value inequality can be written as either X != Y or X <> Y. In
Python 3.X, the latter of these options is removed because it is redundant. In
either version, best practice is to use X != Y for all value inequality tests.

• In Python 2.X, a backquotes expression `X` works the same as repr(X) and con-
verts objects to display strings. Due to its obscurity, this expression is removed in
Python 3.X; use the more readable str and repr built-in functions, described in
“Numeric Display Formats.”

• The X // Y floor division expression always truncates fractional remainders in
both Python 2.X and 3.X. The X / Y expression performs true division in 3.X
(retaining remainders) and classic division in 2.X (truncating for integers). See
“Division: Classic, Floor, and True” on page 151.

• The syntax [...] is used for both list literals and list comprehension expressions.
The latter of these performs an implied loop and collects expression results in a
new list. See Chapter 4, Chapter 14, and Chapter 20 for examples.

• The syntax (...) is used for tuples and expression grouping, as well as generator
expressions—a form of list comprehension that produces results on demand,
instead of building a result list. See Chapter 4 and Chapter 20 for examples. The
parentheses may sometimes be omitted in all three contexts. When a tuple’s
parentheses are omitted, the comma separating its items acts like a lowest-
precedence operator if not otherwise significant.

• The syntax {...} is used for dictionary literals, and in Python 3.X and 2.7 for set
literals and both dictionary and set comprehensions. See the set coverage in this
chapter as well as Chapter 4, Chapter 8, Chapter 14, and Chapter 20 for exam-
ples.

• The yield and ternary if/else selection expressions are available in Python 2.5 and
later. The former returns send(...) arguments in generators; the latter is short-
hand for a multiline if statement. yield requires parentheses if not alone on the
right side of an assignment statement.

142 | Chapter 5: Numeric Types

